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Abstract

Kelly-Ulam Conjecture has been a long outstanding problem for about 60 years. It was posed by P.J. Kelly in 1942 and
recited later by S.M. Ulam. A vertex-deleted subgraph G-v is the subgraph of G induced by V(G) -{v}. The conjecture
states that two graphs G and H with at least three vertices are isomorphic iff they have a same set of vertex-deleted
subgraphs. This problem has been referred to as graph reconstruction problem due to the title of Harary’s paper, “On
the reconstruction of a graph from a collection of subgraphs”, which pointed out an alternative point of view such
that a graph G is reconstructible from the collection of vertex-deleted subgraphs. The problem had been actively
studied from 1960 through early 1990’. According to the preface written by Erdös for a book published to celebrate
the 60-th anniversary of Tutte, a respectful mathematician said “There are three diseases in graph theorists. The first
is four-color-disease, the second is reconstruction-disease, and the third hamiltonian-disease.” Despite of the great
efforts of so many researchers, only a few subclasses of graphs are known to be reconstructible, such as trees,
regular graphs, and disconnected graphs. McKay verified practically that graphs with up to 11 vertices are
determined uniquely by their subgraphs. We introduce a graph numbering called Ψ numbering system, which is a
kind of Gödel numbers, and try to solve the conjecture positively in general. We come up with some new complete
graph invariants expressed as Ψ numbers. However our attempt eventually fails and we conclude that it is possible
that a K-U counterexample exists. Instead we get a simple proof regarding the edge-version K-U conjecture.

                                                                
1 “God created the natural numbers. Everything else is the work of man.” - Kronecker.
2 To reconstruct a graph from its vertex-deleted subgraphs is somewhat resemble to recollect the very vague memory of our lost
paradise from where we had been expelled.
3 1-3-72-2H, Inari-cho, Fukaya City, Saitama Pre., Japan, 366-0026.
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1. Introduction

We consider that the world is a place where additivity generally rules, in other words we think that the world where
we live is a physical world, and additivity is the first property of material. This comes from a simple fact that two
particles cannot occupy a same spatial position at a same time.4 Due to this we can decompose things and recompose
them. Or we can classify things by applying abstraction  and reduction in dual directions. Further we know that this
operation is applicable not only to things but also to processes. Division of labors was the beginning of the
civilization. The statement “The whole is a sum of parts” represents this property. Apparently this proposition is
trivially true for Set Theory. However it is not necessarily true in Graph Theory. The simplest counterexample pair is
2K1 and K2.

5 Those graphs have the same collection of vertex-deleted subgraphs {K1,K1}, but not isomorphic.

Paul Joseph Kelly conjectured in 1942 that with respect to two undirected graphs G and H of order ≥ 3, if for each
vertex i, a pair of vertex-deleted subgraphs G - i and H - i are isomorphic, then G and H are isomorphic [18]. Stanislaw
M. Ulam recited the conjecture in 1960 [39]. We may call it K-U Conjecture or simply K-U. The conjecture is
equivalent to the proposition, “Graphs of order ≥ 3 are reconstructible from the collection of their vertex-deleted
subgraphs”, therefore it is usually referred to as Reconstruction Conjecture [14].

It is easy to see that regular graphs are reconstructible. Take an arbitrary vertex-deleted subgraph, add a vertex to it
and supplement lacking edges. Kelly proved in 1957 that trees are reconstructible from their subgraphs [19]. Erdös
and Rényi showed the fact that almost all graphs are reconstructible in 1963 [9]. Manvel proved in 1976 that
disconnected graphs are reconstructible [28]. A planar graph is maximal if no edge can be added without losing its
planarity. Fiorini and Lauri proved maximal planar graphs are reconstructible in 1981 [10]. As well separable graphs
with no endvertices are reconstructible, where a separable graph is a connected graph to be disconnected by
removing a vertex of it, and an endvertex is a vertex of degree 1 [3].

Frank Harary posed the edge version of K-U Conjecture in 1964, stating that a graph G with at least four edges is
reconstructible from its edge-deleted subgraphs, where edge-deleted subgraph G - e is the subgraph of G obtained
by removing an edge e from G [14]. It can be said that the edge-reconstruction is easier than the vertex-
reconstruction. In fact Greenwell showed in 1971 that if G has no isolated vertices then the vertex-deleted subgraphs
are reconstructible from its edge-deleted subgraphs [12].6 As the restriction of the theorem is quite trivial, we can say
that if a graph G is vertex-reconstructible then G is also edge-reconstructible. Several graph classes were added to
the list of the edge-reconstructible graphs, including planar graphs with minimum degree 5 [22], 4-connected planar
graphs [11],  claw-free graphs [8] and hamiltonian graphs of sufficiently large order [31].

Those results are detailed in Bondy and Hemminger [5], Nash-Williams [30], Ellingham [7], Bondy [4], and so many
other survey articles and text books [1]. After all of those, Lauri wrote in 1992 like the following [24].

“...the list of classes of reconstructible or edge-reconstructible graphs falls far short of exhausting all possibilities. If
only regarded as step-by-step efforts at obtaining an ultimate proof of the reconstructiblility of all graphs, then the
outlook is bleak  the cases solved are few and the techniques used to tackle one class of graphs do not generalize
to other classes. It seems hardly likely that by working laboriously in this fashion at successive classes of graphs
one can ultimately prove the Reconstruction Conjecture for all graphs. So why do graph theorists persist in nibbling
away at this mighty and unyielding problem?”.

An basic difficulty of K-U Conjecture is the existence of pseudosimilar vertices. An automorphism of graph G is an
isomorphism of G itself and two vertices u and v are similar if for some automorphism Φ of G, Φ(u) = v. If u and v are
similar, then clearly G - u and G - v are isomorphic. However the converse is not necessarily true. Harary and Palmer
pointed out  this crucial fact in 1966 [16]. If G - u and G - v are isomorphic but u and v are not similar, then they are said
to be pseudosimilar. Obviously a graph G cannot have all its vertices mutually pseudosimilar, because otherwise G

                                                                
4 “My mother said, ‘Even you, Paul, can be in only one place at one time.’”. - P. Erdös.
5 Kn is a complete graph of order n and kG is a graph such as a union of k graphs G. Incidentally Km,n is a complete bipartite graph
with m and n vertices parts.
6 The converse, i.e., the edge-deleted subgraphs are reconstructible from its vertex-deleted subgraphs is still open. It turns to the
most urgent subject regarding K-U conjecture now.
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would be regular and a regular graph cannot have pseudosimilar vertices. Therefore to find the largest set of mutually
pseudosimilar vertices becomes a focal point of the problem [20][23]. Stockmeyer showed in 1977 a construction of
non-reconstructible directed graphs involving tournaments such that every vertex has a pseudosimilar mate [34].
However it is quite unclear how pseudosimilarity relates to K-U problem in undirected graphs. Anyway pseudo-
similarity forms a dense and wide bush zone of the problem [24].

So far so many graph invariants are proved to be reconstructible from a collection of vertex-deleted subgraphs,
including number of edges, degree sequence, maximum size of a matching, number of isolated vertices, number of
1-factors, number of spanning trees, chromatic number, rank polynomial, chromatic polynomial, flow polynomial,
determinant of an adjacent matrix, characteristic polynomial, number of hamiltonian paths and cycles, idiosyncratic
polynomial, and so on [6][25][33][35]. Since graph isomorphism is intersecting with Group Theory, K-U problem has
some relevance to Algebra. W. T. Tutte and Kocay contributed here remarkably [36][37][21].

As was described above, a very few subclasses of graphs are known to be reconstructible. However once it is
established, then it turns out generally that information of the full collection of subgraphs is rather redundant than
that is required to determine the graph. In 1985 Harary and Plantholt introduced a concept of reconstruction number
such as the smallest number of vertex-deleted subgraphs of a graph which is sufficient to reconstruct the graph [17].
Myrvold proved that almost every graph has reconstruction number 3 in 1988 [29], and it was certified by Bollobás
in 1990 independently [2]. The isomorph-reduced deck of G is a set containing a single member of each isomorphism
type of vertex-deleted subgraphs of G. A strong form of K-U Conjecture is that a graph of order ≥ 4 is uniquely
determined by its isomorph-reduced deck [14]. B. D. McKay verified practically that K-U Conjecture is valid even in
the strong form for all graphs of order ≤ 11 and some larger special graphs such as triangle-free graphs, square-free
graphs, bipartite graphs, and so on [27]. The total CPU time spent was about one year with SUN workstations.

Now we understand that K-U Conjecture is truly difficult to solve. It looks as if there is no way to prove it. On the
other hand, validity of the conjecture is intuitively almost sure, since it is very unlikely that two graphs comes to be
non-isomorphic even though every subgraphs of them exactly coincide. How can we break through this stalemate?
The first step may be to try reductio ad absurdum. Let the negation of K-U Conjecture be X. If X is true, then of course
K-U is invalid. Figuratively speaking it is probable that we cannot find any contradiction in X, while there is no two
worlds together, one is K-U-valid and another K-U-invalid. Going on this line, we may eventually find any partial
conditions which would make some subclasses of graphs reconstructible such as regular graphs, disconnected
graphs and so on. However it seems that there is no straight path on this course to reach to a simple solution but an
innumerably ramified maze with blind alleys to every directions.

Mathematical induction must be tried next. Assume K-U is true for all graphs of order ≤ k . If we can prove K-U for
graphs of order k + 1, then we are done, since we know that K-U is true for small graphs. However we found that this
approach is almost of no use for K-U proofs, though the invalidity of K-U for directed graphs comes visible in this
way. The problem here is that there is no common labelings being a ladder to the upper floor in the vertex-deleted
subgraphs. On the other hand, if those subgraphs of G and H are isomorphic over some total labelings L of G and L’
of H, then it turns out that G and H are trivially isomorphic. Undoubtedly we have to give some common labeling to
the vertex-deleted subgraphs. How can we perform this? Of course it is almost equivalent to solve the reconstruction
problem itself. Accordingly we have to say that it is impossible or very hard to compose a common labeling L for
vertex-deleted subgraphs.

What we found at last is a graph numbering. We call this graph numbering the Ψ numbering system which is simply
a kind of Gödel numbering or a variation of Gödel numbers. As far as we know there was no such an attempt to adopt
Gödel number to Graph Theory, though Gödel numbers were broadly employed in Complexity Theory to solve
isomorphism problems of programming systems. [32][13][38]. We will provide three kinds of Ψ numbers.7 The first is
called labeled Ψ numbers Ψ(L), and the second unlabeled Ψ numbers ΨU(G). The third is a blend of the two numbers
and called natural Ψ numbers ΨN(G). We raise a theorem stating that given two graphs G and H, ΨN(G) is equal to
ΨN(H) if and only if ΨU(G) equals ΨU(H). We try to prove it by checking all possible labelings of two graphs.

                                                                
7 In Section 5 We introduce the fourth variation of Ψ numbers called supernatural Ψ numbers. Finally  in Section 6 we provide four
additional edge-version Ψ numbers called edge-connected  Ψ numbers, edge-labeled Ψ numbers, edge-deck Ψ numbers, and
edge-fragment-deck Ψ numbers.
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2. Ψ  Numbering System

All through this paper, we mostly follow the terminology given by Harary [15]. A graph G(V,E) consists of a finite
non-empty set V = V(G) of n vertices with prescribed set E = E(G) of m unordered pairs (u,v) of distinct vertices u and
v ∈ V. Each pair  x = (u,v) of vertices in E is called an edge of G and written uv. Two graphs G and H are isomorphic
iff there exists a mapping Φ: V(G) → V(H) such that uv ∈ E(G) iff  Φ(u)Φ(v) ∈ E(H), and written G ≅ H. An invariant
of graph G is a number associated with G which has the same value for any graph isomorphic to G. An invariant or
a set of invariants is complete if it determines a graph up to isomorphism. A vertex-deleted subgraph G - v is the
subgraph of G induced by V - {v}. As well k-vertex-deleted subgraph G - S is the subgraph of G induced by V - S,
where a subset of vertices S ⊂ V and | S | = k . We fix n at the order of graphs as well as m at the size of the graphs.

A sequence is an ordered set of elements and σk denotes the natural number sequence (1,2,...,k).8 Let an arbitrary
sequence of length k  be S. The sequence S can be regarded as a mapping from σk = (1,2,...,k) to S itself, hence S(i)
denotes the i-th element in the sequence S. A concatenation of two sequences a and b is denoted a + b. As well we
use a subtraction a - b of two sequences a and b, where a - b is the ordered set of elements x ∈ a and x ∉ b. Of course
a - b preserves the ordering in the sequence a. We may sometimes abuse the element e for a singleton sequence (e).

A graph G is labeled when n vertices are distinguished from one another by names such as p1,p2,...,pn. However we
restrict the labeling of graphs from now on as follows. A labeling L of graph G is a mapping from a vertex set V =
{v1,v2,...,vn} onto a set σ of distinct natural numbers, where L(vi) = j ∈ σ. We fix the set σ at the natural number
sequence σn = (1,2,...,n) unless it is mentioned explicitly. We call such a labeling rule the natural labeling scheme. GL

denotes the graph G labeled by L, and LG denotes the set of all labelings L of G.

Let x be an arbitrary sequence of distinct natural numbers i ∈ σn, and the set of all such number sequences x of length
≤ n be Σ n . Σ k

n denotes a subset of Σ n such as Σ k
n  = {x | x ∈ Σ n , | x | ≤ n - k} and k  ≤ n. The complementary number

sequence σn - x of a number sequence x is denoted x  = σn - x, and x i( ) denotes the i-th number in the number

sequence x . Suppose a number sequence x ∈ Σ 2
n  and the vertex subset S ⊂ V such as L(S) = x,9 then GL(x) denotes

k-vertex-deleted subgraph GL - S, where k = | x |. P(i) denotes the i-th prime number.

Ψ( ):K1 1= , Ψ( ):2 31K = , Ψ( ):K2 5= , and

Ψ Ψ( ( )): ( ) ( ( ( )))G x P iL
G x x i

i

r
L= +

=
∏

1

, where r = | x | and x ∈ Σ 2
n .

Ψ Ψ( ): ( ( ))L GL= φ , where L ∈ LG and GL is a labeled graph of G labeled by L.

Ψ Ψ Ψ( ): ( ) ( )G L L= ≥0
: ∀L ∈ LG, where G is an unlabeled graph.

Ψ(GL(x)) of k-vertex-deleted subgraphs GL(x) is defined recursively for all number sequences x ∈ Σ 2
n  and Ψ(L) is the

case when x is the empty set φ. We call a Ψ(L) a labeled Ψ number of G. Apparently the computation of a Ψ(L) forms
a tree such that its nodes are Ψ numbers Ψ(GL(x)) in some computation level 0 ≤ i ≤ n - 2. We call such a computation
tree a Ψ-tree. Every node in level i is a vertex-deleted subgraph of its parent node, and the number of edges
(excluding the edge incident with the parent node) of an inner node is n - i. Every leaves are either 2K1 or K2. We call
the set of all formulas defined above and appeared in a Ψ-tree a Ψ-formulas. Note that there is only one Ψ-tree, and
then only one Ψ-formulas for all graphs of some fixed order n, although each actual values of Ψ numbers are
different. An unlabeled graph G of order n has n! Ψ(L) corresponding to each labeling L of G, and Ψ(G) is the
maximum value among them. The number sequence x ∈ Σ 2

n represents the set of deleted vertices in the upper levels

in that order, and works as an indicator on a Ψ-tree. Whenever a vertex v of label l = L(v) is deleted, the number l is
appended at the tail of the number sequence x and the length of x increases by one. Every number sequence x ∈ Σ 2

n

appears exactly once at a fixed position on a Ψ-tree as the node Ψ(GL(x)). Note that x designates the deleted vertices
and x  represents the remained vertices in the k-vertex-deleted subgraph GL(x).

                                                                
8 Note that “ordered set” here is quite different from “partially ordered set”. This is just a set of successive elements.
9 We permit to write Φ (s) = s’ for a mapping Φ :α → β even in the case where s and s’ are the subsets s ⊆ α and s’ ⊆ β, as well
as the case where s and s’ are the elements s ∈ α and s’ ∈ β. In the case of L(S) = x, S is a subset and x is a sub-sequence, i.e., an
ordered subset. Hence the equality is valid in our convention. If either/both of s or/and s’ are sequences, then of course the order
must be preserved/coincident.
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3. Ψ  Number Theorem

A mapping from a finite set onto itself is called a permutation. An automorphism Φ of a graph G is an isomorph
mapping V → V, and automorphisms of G forms the automorphism group Γ(G). Suppose two labelings L1 and L2 of
G. Since a labeling L of G is a mapping V → σn, there is a permutation Φ on V such as

where In is the identity on σn and Φ  = L2
-1In L1 = L2

-1L1. If the permutation Φ is an automorphism, then we say that L1

and L2 is a label-automorphism of G (over natural labeling scheme). Note that if Φ = L2
-1L1 is an automorphism of G,

then the permutation Φ-1 = L1
-1L2 is also an automorphism. Therefore, if (L1,L2)  is a label-automorphism, then so is

(L2,L1). Further it is easily to be certified that if (L1,L2) and (L2,L3) are label-automorphisms, then (L1,L3) is a label-
automorphism, too. Consequently the label-automorphism relation is an equivalence relation and it partitions the set
LG of  all labelings L of G into equivalence classes. Note that all through this paper labelings are denoted like L* and
other mappings except identity In are written in upper case Greek.10 Hereafter “→” is assumed to be always bijective.

3.1. Ψ(L) and Ψ(L’) are equal iff  labelings L and L’ of graph G  is a label-automorphism of G.

Proof: The statement is trivially true for graphs of order ≤ 2. Then assume the order of G ≥ 3. If L and L’ is a label-
automorphism, then by the definition, there is a permutation Φ = L’-1InL on V such that Φ is an isomorph mapping V
→ V. Let the Ψ-trees of L and L’ be Ψ1 and Ψ2 respectively. Consider subgraphs GL(x) and GL’(x) which have a same
number sequence x as their argument. Positions of these subgraphs on Ψ-trees are decided uniquely by x, and each
x is coded by L or L’ respectively. Consequently for all number sequences x ∈ Σ 2

n , the isomorph mapping Φ maps

GL(x) in Ψ1 to the corresponding subgraph GL’(x) in Ψ2 through the identity mapping In. Hence for all x ∈ Σ n
2 , Ψ(GL(x))

= Ψ(GL’(x)), and Ψ(L) = Ψ(L’). The converse. Assume Ψ( L) = Ψ( L’). Then for all x ∈ Σ 2
n , Ψ(GL(x)) and Ψ(GL’(x)) must

be exactly coincident by the definition of Ψ numbers. Consider a permutation Φ on V decided by L and L’ such as Φ
= L’-1In L. Let y be a number sequence in Σ 2

n  such as | y | = n - 2, then for all y ∈ Σ 2
n , Ψ(GL(y)) = Ψ(GL’(y)) = 3 or 5, and

Φ(L-1(y)) = L’-1(y). Take vertex pairs w1 and w2 corresponding to y in the graph G mapped by L and L’ respectively,
where L(w 1) =  L(w 2) = y. Since Φ(w 1) = w 2 and Ψ(GL(L(w1))) = Ψ(GL’(L’(w2))) = 3 or 5, it comes to be that the subgraph
of GL induced by x1 is a 2K1 (K2) iff the subgraph of GL’ induced by w2 is a 2K1 (K2 respectively). Hence the
permutation Φ is an isomorph mapping: V → V, and (L,L’) is a label-automorphism (over natural labeling scheme). <

3.2 Two graphs G and H are isomorphic iff they have a same labeled Ψ number such as Ψ(L) equals Ψ(L’).

Proof: The statement is trivially true for graphs of order ≤ 2. Then assume the order of graphs ≥ 3. Suppose that two
graphs G and H are isomorphic. Then there is an isomorph mapping Φ: V(G) → V(H). Let a labeling of G be L. We
show that there is a labeling L’ of H corresponding to L such that  Ψ(L) = Ψ(L’). Suppose Φ = ΦL-1L = L’-1L = L’-1InL
and L’ = LΦ-1, where L’ is a labeling of H. Let the Ψ-formulas of L and L’ be Ψ and Ψ’ respectively. For all number
sequences x ∈ Σ 2

n , Φ maps x in Ψ to the same x in Ψ’ through the identity mapping In. Consequently every subgraph

GL(x) in Ψ is mapped to the corresponding subgraph HL’(x) in Ψ’ by the isomorph mapping Φ. Hence for all x ∈ Σ 2
n ,

Ψ(GL(x)) = Ψ(HL’(x)), and this yields Ψ(L) = Ψ(L’). Next assume there are labelings L of G and L’ of H such as Ψ(L)
= Ψ(L’). Then for all x ∈ Σ 2

n , Ψ(GL(x)) and Ψ(HL’(x)) must be exactly coincident by the definition of Ψ numbering

system. Consider a mapping Φ: V(G) → V(H) decided by L and L’ such that Φ = L’-1InL. Let y be a number sequence
in Σ 2

n  such as | y | = n - 2. Take vertex pairs w in the graph G and w’ in H mapped by L and L’ respectively

corresponding to y, where L(w) = L’(w’) = y. Then the subgraph of G induced by w is a 2K1 (K2) iff the subgraph of
H induced by w’ is a 2K1 (K2 respectively). Hence the mapping Φ is an isomorph mapping V(G) → V(H). <

3.3 Two graphs G and H are isomorphic iff Ψ(G) equals Ψ(H).

Proof: Straightforward from 3.2. This theorem declares that Ψ(G) is a complete invariant of graphs. <

                                                                
10 In Section 6, we will define edge-labeling Λ and use lower Greek γ to denote the partial labeling of Λ.

V V
L

n

I

n

Ln

→ → →
−

1 2
1

σ σ ,
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4. Kelly-Ulam Conjecture

Around the Kelly-Ulam Conjecture, the collection of the vertex-deleted subgraphs of a graph G is called the deck of
G as well as a vertex-deleted subgraph in the deck is called a card. Similarly the collection of the edge-deleted
subgraphs of G is called the edge-deck of G. We will follow this convention. Now we introduce another Ψ numbers
called unlabeled Ψ numbers, defined for unlabeled graphs and written ΨU(G).

       ΨU(K1) := 1, ΨU(2K1) := 3, ΨU(K2) := 5, and

      Ψ Ψ
U

G v

i

r

G P i i( ): ( ) ( )= −

=
∏

1

, where r = | V | and i < j ⇔ Ψ(G - vi) ≤  Ψ(G - vj).

An unlabeled graph G has only one unlabeled Ψ number ΨU. This formulation represents the condition of K-U
directly. The term Ψ(G - vi) in the formula is the maximum labeled Ψ number of a vertex-deleted subgraph G - vi of G.
We expand this definition to labeled graphs blending the concept of labeled Ψ numbers Ψ(L) and unlabeled Ψ
numbers ΨU(G). We call such a  Ψ numbering natural Ψ numbers and write ΨN(L). At the top level of the Ψ-tree of
a natural Ψ number ΨN(L), it has an ordered set of labeled Ψ numbers Ψ(GL (i)) of the vertex-deleted subgraphs. The
rest part of the tree is similar to the ordinary labeled Ψ numbers.

       ΨN(K1) := 1, ΨN(2K1) := 3, ΨN(K2) := 5, and

      Ψ Ψ
N

G i

i

r

L P i L( ): ( ) ( ( ))=
=

∏
1

, where L ∈ LN
G , r = | V | and i < j ⇔ Ψ(GL (i)) ≤  Ψ(GL (j)).

      Ψ Ψ ΨN N NG L L( ): ( ) ( )= ≥0
: ∀L ∈ LN

G , where LN
G  is the set of all labelings L with valid ΨN(L).

In this formulation every subgraphs of a labeled graph GL share a common labeling L. Obviously a natural Ψ number
ΨN(L) is a labeled Ψ number Ψ(L), therefore ΨN(L) = Ψ(L) . However all labelings L ⊆ LG do not necessarily give a

ΨN(L) due to the constraint condition at the top level of the Ψ-tree. Let LN
G  denote the set of all labelings L with a

legitimate ΨN(L) of G. Then the set LN
G  is a subset of LG  such as LN

G ⊆ LG . A graph G has at least one ΨN(L), and

ΨN(G) is the maximum value among all ΨN(L) of G. It is easy to see that ΨU(G) ≥ Ψ(G) ≥ ΨN(G).

4.1 Given two graphs G and H, if there exist labelings L of G and L’ of H such that ΨN(L) equals ΨN(L’), then G and
H are isomorphic.

Proof: The statement is true for graphs of order ≤ 2. Then we assume the order of graphs ≥ 3. Assume there exist
labelings L of G and L’ of H such as ΨN(L) = ΨN(L’). Then by the definition of natural Ψ numbers, for all x ∈ Σ 2

n ,

ΨN(GL(x)) and ΨN(HL’(x)) must be exactly coincident. Consider a mapping Φ: V(G) → V(H) decided by L and L’ such
that Φ = L’-1L. Let y be a number sequence in Σ 2

n  such as | y | = n - 2. Take vertex pairs w in the graph G and w’ in H

mapped by L and L’ respectively corresponding to y, where L(w) = L’(w’) = y. Then it comes to be that the subgraph
of G induced by w is a 2K1 (K2) iff the subgraph of H induced by w’ is a 2K1 (K2 respectively). Hence the mapping Φ
is an isomorph mapping V(G) → V(H), and G and H are isomorphic. <

4.2 If two graphs G and H are isomorphic, then for any labeling L of G, there exists  a labeling L’ of H such that
ΨN(L) equals ΨN(L’) .

Proof: The statement is trivially true for graphs of order ≤ 2. Then we assume the order of graphs ≥ 3. Assume that
two graphs G and H are isomorphic. Then there is an isomorph mapping Φ: V(G) → V(H). Let an arbitrary labeling of
G be L. We show that there is a labeling L’ of H corresponding to L such that  ΨN(L) = ΨN(L’). Consider a labeling L’
such that Φ = ΦL-1L = L’-1L = L’-1InL and L’ = LΦ-1. Let the Ψ-formulas of L and L’ be Ψ and Ψ’ respectively. For all
number sequences x ∈ Σ 2

n , Φ maps x in Ψ to the same x in Ψ’ through the identity In. Consequently every subgraph

GL(x) in Ψ is mapped to the corresponding subgraph HL’(x) in Ψ’ by the isomorph mapping Φ. Hence for all x ∈ Σ 2
n ,

ΨN(GL(x)) = ΨN(HL’(x)). This yields ΨN(L) = ΨN(L’). <
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4.3 Two graphs G and H are  isomorphic iff ΨN(G) equals ΨN(H).

Proof: Since ΨN(G) and ΨN(H) are both natural Ψ numbers, if ΨN(G) = ΨN(H), then by 4.1, G and H are isomorphic.
The converse. Without loss of generality we assume that G and H are isomorphic but ΨN(G)  > ΨN(H). Then by 4.2
there must be a labeling L’ of H such that ΨN(G) = ΨN(L’) > ΨN(H). This conflicts the hypothesis that ΨN(H) is the
maximum natural Ψ number of H. Hence the statement is deduced to be true. Note that this theorem declares that
ΨN(G) is a complete invariant of graphs. <

4.4 Given two graphs G and H, ΨN(G) equals ΨN(H) iff ΨU(G) equals ΨU(H) .

Failed Proof: Assume ΨN(G) = ΨN(H), then by 4.3, G ≅ H. This implies ΨU(G) = ΨU(H). Next we prove the
converse, i.e., “If ΨU(G) = ΨU(H), then ΨN(G) = ΨN(H)” by applying both reductio ad absurdum and mathematical
induction. Assume that there exists a natural number k  ≥ 3 such that for all graphs G and H of order ≤ k , the
proposition is true. Suppose graphs G and H of order k  + 1, and assume ΨU(G) = ΨU(H). Then by the definition of
unlabeled Ψ numbers,

∀i ∈ σn, Ψ(G - ui) = Ψ(H - vi). (1)

Ψ(G - u1) ≤ Ψ(G - u2) ≤ ... ≤ Ψ(G - un),                    (2)
Ψ(H - v1) ≤ Ψ(H - v2) ≤ ... ≤ Ψ(H - vn).        (3)

Let the labelings of G and H be L and L’ respectively. The labeled graph of G and H labeled by the labelings L and L’
are denoted GL and HL’ respectively. By the definition of natural Ψ numbers, for each number sequence x of Ψ-tree
of the labeled graph GL,

i < j ⇔ ΨN(GL(i)) ≤  ΨN(GL(j)).

ΨN(GL(1)) ≤ ΨN(GL(2)) ≤ ... ≤ ΨN(GL(n)),             (4)
ΨN(HL’(1)) ≤ ΨN(HL’(2)) ≤ ... ≤ ΨN(HL’(n)).          (5)

Let Θ and Θ’ be mappings: σn → σn which satisfy the following inequalities corresponding to (4) and (5) such as Θ(i)
= j, and let GU(Θ(i)) denote the unlabeled version of a labeled vertex-deleted subgraph GL(j).

ΨN(GU(Θ(1))) ≤ ΨN(GU(Θ(2))) ≤ ... ≤ ΨN(GU(Θ(n))),                    (6)
ΨN(HU(Θ’(1))) ≤ ΨN(HU(Θ’(2)) ≤ ... ≤ ΨN(HU(Θ’(n)),                    (7)

Note that the sets of those vertex-deleted subgraphs are 1-to-1 corresponding like,

{G - ui} ↔ {GU(Θ(i))} ↔ {GL(i)}, and {H - vi} ↔ {HU(Θ’(i)} ↔ {HL’(i)}.

Vertex-deleted subgraphs G - ui and GU(Θ(i)) are unlabeled and the maximum natural Ψ number ΨN(G) of an unlabeled
graph G is unique. So for all i ∈ σn, there exists some number j such as ΨN(G - ui) = ΨN(GU(Θ(j))). Hence by the
equation (1), the Ψ number sequences (6) and (7) must be coincident as well as (2) and (3) like the following.

∀i ∈ σn, ΨN(GU(Θ(i))) = ΨN(HU(Θ’(i)). (8)

ΨN(GU(Θ(i))) represents the maximum ΨN value of labeled subgraph GL(j). Further by 4.2, and 4.3,

ΨN(GU(Θ(i))) = ΨN(HU(Θ’(i))) ⇔ GU(Θ(i)) ≅ HU(Θ’(i)) ⇔ GL(j) ≅ HL’(j) ⇔ ∀L,∃L’:ΨN(GL(j)) = ΨN(HL’(j)).

Therefore we have,

∀L ∈ LN
G , ∃L’ ∈ LN

H , ∀i ∈ σn: ΨN(GL(i)) = ΨN(HL’(i)). (A)

Assume Ψ  N(G) ≠ Ψ  N(H). Then by 4.3, G /≅  H. Hence by 4.1, There is no pair of labelings L of G and L’ of H such as
ΨN(L) = ΨN(L’). Consequently by the definition of natural Ψ numbers,

∀L ∈ LN
G , ∀L’ ∈ LN

H , ∃i ∈ σn: ΨN(GL(i)) ≠ ΨN(HL’(i)). (B)

Obviously the equation (A) conflicts the inequality (B). By this contradiction, we deduce that the proposition, “if
ΨU(G) = ΨU(H), then ΨN(G) = ΨN(H)” is true for all graphs of order k  + 1. Moreover it is easy to certify that the
proposition is true for small graphs of order ≤ 3. This completes the mathematical induction. <
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Remark: Apparently our proof for 4.4 is incorrect as the assertion A is invalid. From 4.1, 4.2 and 4.3, we know

ΨN(L) = ΨN(L’) ⇔ G ≅ H ⇔ ∀L, ∃L’: ΨN(GL) = ΨN(HL’) ⇔ ΨN(G) = ΨN(H).

However the above inference which derives assertion A  does not work. Because GL(j) and HL’(j) are subgraphs and
the theorems are not for subgraphs. Therefore the labelings of them must be considered independently. Let the
independent labelings of GL(j) and HL’(j) be Lj and L’j respectively. Then the equivalence should be correctly,

GL(j) ≅ HL’(j) ⇔ ∀Lj,
∃L’j: ΨN( GL j

) = ΨN( HL j'
).

We cannot derive the desired conclusion from the above equivalence. A vertex-deleted subgraph GL(i) is labeled by
a labeling L of G, and L is so to say a total labeling which covers all the subgraphs of G but cannot cover every
combinations of the local labelings Lj for the subgraphs. Now we will challenge the proof of 4.4 again. This time we
try to prove it by showing that if there exists a pair of graphs of order k  such as a counterexample of 4.4, then there
exists a pair of  vertex-deleted subgraphs of them which is also the counterexample of it. Recall 4.4.

4.4 Given two graphs G and H, ΨN(G) equals ΨN(H) iff ΨU(G) equals ΨU(H) .

Failed Proof: As the necessity part is self-evident, we prove the sufficiency part, i.e., “If ΨU(G) = ΨU(H), then ΨN(G)
= ΨN(H)”. Suppose the smallest counterexample of the proposition such as a pair of graphs G and H of order k .
Assume that ΨU(G) = ΨU(H) but ΨN(G) ≠ ΨN(H). Let the labelings of G and H which give the maximum natural Ψ
numbers ΨN(G) and ΨN(H) be L and L’ respectively. By the assumption, for all i ∈ σn: Ψ(G - ui) = Ψ(H - vi), and by the
definition of natural Ψ numbers, there exists some i ∈ σn: such as ΨN(GL(i)) ≠ ΨN(HL’(i)). Without loss of generality
we assume that L(ui) = i and L’(vi) = i. Let the vertex-deleted subgraphs G - ui and H - vi be Gi and Hi respectively. Then
we have ΨU(Gi) = ΨU(Hi) and ΨN(Gi) ≠ ΨN(Hi). The vertex-deleted subgraphs Gi and Hi is a counterexample of the
proposition and their order is k  - 1. This conflicts the hypothesis that G and H is the smallest counterexample.
Therefore we deduce that the statement is true. <

Remark: The flaw of the above proof is similar to the aforementioned proof. ΨN(Gi) ≠ ΨN(Hi) is true for the labelings
L and L’. Of course we can borrow them as the partial labelings for the subgraphs Gi and Hi. The inequality is valid
as far as the labelings L and L’ work. Further if the number of the incompatible subgraphs pair is only one, then the
labelings of G and H are enough to verify the discrepancy of the graphs. Hence the smallest counterexample must
have two or more incompatible vertex-deleted subgraphs pairs. In this case subgraphs A and A’ agree in a labeling
pair La and La’ and disagree in another labelings Lb and Lb’, while subgraphs B and B’ agree in labelings Lb and Lb’.

4.5 Two graphs G and H are  isomorphic iff their unlabeled Ψ numbers are equal.

Proof: Trivially true by 4.3 and 4.4. This theorem declares that ΨU(G) is a complete invariant of graphs. <

4.6 Kelly-Ulam Conjecture: Two graphs of order ≥ 3 are isomorphic iff they have the same deck.

Proof: The necessity part is self-evident. Then we prove the sufficiency part. Let two graphs of the same order n be
G and H. The proposition to be proven is that if there is a mapping Φ: V(G) → V(H) such that

∀v ∈ V(G), G - v ≅ H - Φ(v), then G ≅H.

By the premise, ∀i ∈ σn, G - vi ≅ H - Φ(vi), then by 4.5, it comes that ∀i ∈ σn, ΨU(G - vi) = ΨU(H - Φ(vi)). This yields ΨU(G)
= ΨU(H). Hence by 4.5 again, G and H are isomorphic. <

4.7 Reconstruction Conjecture: A graph of order ≥ 3 is reconstructible from its deck.

Proof: Let the deck of a graph G be D. It is obvious that as far as the given deck D is obtained legitimately, there must
be at least one graph H whose deck is D.  Furthermore it is also sure that we can find such a graph H by some
exhaustive enumeration in a finite time. The problem here is whether the graph H obtained in such a way is actually
unique or not. And 4.6 guarantees this. <
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5. K-U Counterexamples

As was remarked at the second proof of 4.4, a pair of graphs of the smallest counterexample must have at least two
incompatible subgraphs. Our difficulty is that we have no ground to assert that one of them is surely a non-
isomorphic subgraphs pair as we are disable to check all the cases of exhaustive combinations of the labelings of the
subgraphs by verifying the labelings of the parent graphs. Simultaneously we know that our Ψ numbers are too
redundant to determine the isomorphism of the graphs. In fact a Ψ-tree of a Ψ number has

n
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nodes. Obviously the information is more than abundant. To what extent can we reduce the structure of Ψ numbering
system? We will show that we can simplify it up to just one vertex-deleted subgraph and a small attachment part of
it. Hereon the attachment part is the subgraph of G consists of  the deleted vertex v and other vertices than v of G and
the edges connecting v to other vertices. We introduce a newly defined Ψ numbers and call it supernatural Ψ
numbers. ΨS denotes such a supernatural Ψ number.

       ΨS(K1) := 1, ΨS(2K1) := 3, ΨS(K2) := 5, and

      ΨS L v F L v F L v( , ): ( , ) ( , )= ×0 1
, where L ∈ LG

 and v ∈V.

F0(L,v) := P L v G L vL( ( )) ( ( ( )))Ψ , where GL is a labeled graph of G labeled by L, and

F1(L,v) := 
i

r
f L v iP i L

=1
Π ( ) ( ( ), ) , where r = | V |, L(v) ∈ σn is the label number of the vertex v.

                              fL(l,i):= 
0
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.

       ΨS(L):= ΨS(L,v0) ≥ ΨS(L,v)): ∀v ∈V, where L ∈ LG
.

       ΨS(G):= ΨS(L0) ≥ ΨS(L): ∀L ∈ LG , where LG  is the set of all labelings L of G.

ΨS(L,v) is a function (LG × V) → N such as a product F0 × F1, where L is a labeling of G, v ∈V, and N is the infinite set
of natural numbers. The function F0(L,v) represents the vertex-deleted subgraph labeled by L, and v is the vertex
deleted from the labeled graph GL. Note that Ψ(GL(L(v))) is a labeled Ψ number but neither a supernatural Ψ number
nor a natural Ψ number. The function F1(L,v) represents the attachment part of the vertex v connecting to the
vertex-deleted subgraph GL(L(v)), and evaluates the adjacency of the vertex v with other vertices of G. Supernatural
Ψ number ΨS(L,v) is a kind of labeled Ψ number and determines a unique Ψ number for each labeling L and vertex v.

5.1 Given two graphs G and H, if there exist a labeling L and a vertex u of G,  as well a labeling L’ and a vertex v
of H such that ΨS(L,u) equals ΨS(H,v), then G and H are isomorphic.

Proof: The statement is provable almost similarly to the aforementioned proofs. The statement is true for graphs of
order ≤ 2. Then assume the order of graphs ≥ 3. Suppose that there exist a labeling L and a vertex u of G, and a labeling
L’ and a vertex v of H such as ΨS(L,u) = ΨS(L’,v) = F0(L,u) × F1(L,u) = F0(L’,v) × F1(L’,v). Then by the definition of
supernatural Ψ numbers, F0(L,u) = F0(L’,v) and F1(L,u) = F1(L’,v). Consequently

Ψ(GL(L(u))) = Ψ(HL’(L’(v))), (1)
∀i ∈σn  fL(L(u),i) = fL’(L’(v),i). (2)

Consider a mapping Φ: V(G) → V(H) decided by L and L’ such that Φ = L’-1L. At first from the definition of
supernatural Ψ numbers, it must be L(u) = L’(v). Suppose ordered vertex pairs w and w’ in the graphs G and H
respectively such as L(w) = L’(w’) = (x,y), where x,y ∈ σn and x, y ≠ L(u) = L’(v). Then by the equation (1) and the
definition of labeled Ψ numbers, Ψ(GL(σn - (x,y))) = Ψ(HL’(σn - (x,y))). Then it comes to be that the subgraph of G
induced by w is a 2K1 (K2) iff the subgraph of H induced by w’ is a 2K1 (K2 respectively). Now turn our eyes to the
attachment parts. Suppose L(u) = L’(v) = x and y ∈σn, then from the equation (2), fL(x,y) = fL’(x,y). Consequently for all
vertex pairs w and w’ in the attachment part of respectively G and H such as L(w) = L’(w’) = (x,y), the subgraph of G
induced by w is a 2K1 (K2) iff the subgraph of H induced by w’ is a 2K1 (K2 respectively). Thus the mapping Φ is an
isomorph mapping V(G) → V(H), and G and H are isomorphic. <
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5.2 If two graphs G and H are isomorphic, then for any labeling L and a vertex u of G, there exist  a labeling L’  and
a vertex v of H such that ΨS(L,u) equals ΨS(L’,v) .

Proof: The proof is almost similar to the aforementioned proofs. The statement is true for graphs of order ≤ 2. Then
assume that the order of graphs ≥ 3 and two graphs G and H are isomorphic. Then there is an isomorph mapping Φ:
V(G) → V(H). Let an arbitrary labeling of G be L and a vertex of G be u. We show that there is a labeling L’ and a vertex
v of H corresponding to L and u such as ΨS(L,u) = ΨS(L’,v). Suppose a labeling L’ such that Φ = ΦL-1L = L’-1L =
L’-1InL and L’ = LΦ-1. The mapping Φ maps every subgraphs GL(x) in the vertex-deleted subgraph GL(L(u)) to the
corresponding subgraphs HL’(x) in the vertex-deleted subgraph HL’(L’(v)). This yields ΨS(GL(L(u))) = ΨS(HL’(L’(v))) =
F0(L,u) = F0(L’,v) and L(u) = L(v). Next turn our eyes to the attachment parts. Suppose L(u) = L(v) =  x and y ∈σn,. Φ
maps every vertex pairs (x,y) in the attachment part of  GL to the corresponding vertex pairs (x,y) in the attachment
part of HL’. Then for all y ∈σn, fL(x,y) = fL’(x,y), and this yields F1(L,u) = F1(L’,v). Hence F0(L,u) × F1(L,u) = F0(L’,v) ×
F1(L’,v) = ΨS(L,u) = ΨS(L’,v). <

5.3 Two graphs G and H are  isomorphic iff ΨS(G) equals ΨS(H).

Proof:  Abbreviated as it is quite same with the proof of 4.3. <

5.4 Two graphs G and H of order n are isomorphic iff for all  i ≤ n, Ψ(G - ui) equals Ψ(H - vi).

Counterexample: Proposition 5.4 is a paraphrase of K-U Conjecture. We admit that we had better consider the
possibility of the existence of K-U counterexamples. Let a labeling of G be L and a vertex of G be u, as well a labeling
of H be L’ and a vertex of H be v. From 5.1, 5.2 and 5.3,

ΨS(L,u) = ΨS(L’,v) ⇔ G ≅ H ⇔ ∀L,∀u, ∃L’,∃v: ΨS(L,u) = ΨS(L’,v) ⇔ ΨS(G) = ΨS(H).

Assume for all i ∈σn Ψ(G - ui) = Ψ(H - vi). Then by the definition of supernatural Ψ numbers,

 ∀i,∃L,∃L’:  F0(L,ui) = F0(L’,vi).  (1)

The minimum condition for G and H to be isomorphic:

 ∃L,∃L’,∃u.∃v:  F0(L,u) × F1(L,u) = F0(L’,v)× F1(L’,v). (2)

For the counterexample, take the negation of (2),

 ∀L,∀L’,∀u.∀v:  F0(L,u)  ≠ F0(L’,v) ∨  F1(L,u)  ≠ F1(L’,v). (3)

From (1) and (3) it must be

 ∀i,∃L,∃L’: F0(L,ui) = F0(L’,vi) ⇒ F1(L,ui) ≠ F1(L’,vi). (4)

We will call such a situation as (4) F1-friction. It is a very invisible contradiction located at the attachment parts. Now
we know that any K-U counterexample must have F1-frictions. In a counterexample, for every isomorph mappings
between corresponding vertex-deleted subgraphs, there exists a F1-friction relevant to the mapping.

Counter-counterexample: We want to show the existence of a counterexample for K-U counterexamples. However
this is somewhat of a paradoxical attempt, because (1) if K-U is true, then a K-U counterexample does not exist in the
first place, hence it is impossible to construct a counter-counterexample. (2) if K-U is not true, then a K-U
counterexample is constructible, but a counter-counterexample is not. Hence even if it is able, it is inevitable to be
pure theoretical one. What we are seeking is a K-U counterexample which has a non-isomorphic subgraphs pair. The
ground of our theory is that it may be probable that the F1-friction in a counterexample is remaining in some
subgraphs pair. If ∀L,∀L’:  F1(L,u) = F1(L’,v), it becomes the simplest counter-counterexample. If either u (respectively
v) is isolated or u (v) is adjacent with all other vertices, it will happen. However we already know that disconnected
graphs cannot yield a counterexample. Alternatively suppose a K-U counterexample pair G and G’ of order k . Can’t
we find a graph pair H and H’ of order k  + 1 preserving the F1-frictions of G and G’. If there is, it is a counter-
counterexample. But this does not happen because every vertex-deleted subgraphs of a counterexample must be
pairwise isomorphic and G and G’ are not isomorphic. So we cannot help concluding that it is possible that a K-U
counterexample exists. Any K-U counterexample never shares a pair of counterexample subgraphs inside and all of
their vertex-deleted subgraphs are so to say pairwise incompatible, i.e., having their F1-frictions.
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6. Edge-Reconstruction Conjecture

Our final stage to investigate the K-U Conjecture should be to examine the possibility of edge-reconstruction.
Because we already reached the conclusion that K-U Conjecture may not hold, and if edge-reconstruction is
possible, we would expect to discover a K-U counterexample whose Ψ numbers are equal but edge Ψ numbers are
different. On the contrary if the edge-reconstruction is not possible, i.e., if there exists a counterexample for edge-
reconstruction, then it turns out to be also a counterexample of K-U. Recall the conjecture posed by Harary [14].

Edge-Reconstruction Conjecture: A graph G of size ≥ 4 is reconstructible from its edge-deleted subgraphs.

An edge-deleted subgraph G - e is the subgraph of G obtained by removing an edge e from G. As well a k-edge-
deleted subgraph G - S is defined similarly, where S ⊂ E and | S | = k . Suppose two isomorphic graphs G and H, and
an isomorph mapping Φ: V(G) → V(H). Then there exists a mapping Θ: E(G) → E(H) such that ∀e ∈ E(G): Φ(e) = e’ ⇔
Θ(e) = e’. We call such a mapping Θ an edge-isomorph mapping from E(G) onto E(H).

We define edge-labelings of a graph G with m edges as follows. Λ denotes a mapping from the edge set E onto the
number sequence σm = (1,2,...,m) such as Λ(ei) = j ∈ σm and ei ∈ E. Λ is called an edge-labeling of G and the number
j is called the edge-label of the edge ei. We call the range σm associated with the edge-labeling Λ the label set of Λ. ΛG

denotes the set of all edge-labelings Λ of G, and GΛ denotes the edge-labeled graph of G labeled by an edge-labeling
Λ. An unlabeled graph G of size m has m! edge-labelings. A partial labeling λ of edge-labeling Λ of G is a mapping
E(Gλ) → σ ⊆ σm such as ∀e ∈ E(Gλ): Λ(e) = λ(e), where Gλ is a subgraph of an edge-labeled graph GΛ, and σ is the
sub-sequence of σm = (1,2,...,m) of length | E(Gλ) |. We call the range σ of the partial labeling λ the label set of λ.

Suppose a subgraph Gλ labeled by a partial labeling λ of an edge-labeled graph GΛ labeled by the edge-labeling Λ.
Σm  is the set of all sequences of distinct natural numbers i ∈ σm of length ≤ m. Let σ be the label set of λ and x be an

arbitrary sequence of distinct natural numbers i ∈ σ ⊆ σm. Σσ ⊆ Σm  denotes the set of all such number sequences x.

Σ k
σ denotes a subset of Σσ such as Σ k

σ  = {x | x ∈ Σσ , | x | ≤ | σ | - k}, where k  ≤ | σ | and Σ k
σ  ⊆ Σσ . The complementary

number sequence σ - x of a number sequence x is denoted x  = σ - x, and x i( ) denotes the i-th number in the number

sequence x . Suppose a number sequence x ∈ Σ 3
σ and the edge subset S ⊂ E(Gλ) such as Λ(S) = x, then Gλ(x) denotes

k-edge-deleted subgraph Gλ - S, where k = | x |. We introduce a new Ψ number called edge-connected Ψ numbers and
written ΨC. The edge-connected Ψ number ΨC is defined for connected and edge-labeled graphs.

 ΨC(pK1):= 2p, ΨC(pK1+K2):= 2p×3, ΨC(pK1+2K2):= 2p×5, ΨC(pK1+P2):= 2p×7, ΨC(pK1+3K2):= 2p×11,
 ΨC(pK1+K2+P2):=2p×13, ΨC(pK1+P3):= 2p×17, ΨC(pK1+K1,3):= 2p×19, and ΨC(pK1+K3):= 2p×23,

 where p = 0,1,2 is the number of the isolated vertices in the graph.

Ψ Ψ
C

p G x x i

i

r

G x P i C( ( )): ( ) ( ( ( )))
λ

λ= + +

=
∏2 1

1

, where x ∈ Σ 3
σ , r = | x | ≥ 4, x  = σ - x, σ is the label set of λ,

 p = 0,1,2 is the number of the isolated vertices in Gλ(x), and
G x x iλ ( ( ))+  is the edge-deleted subgraph Gλ(x) - λ-1( x (i)).

Ψ ΨC CG G( ): ( ( ))λ λ φ= , where Gλ is an edge-labeled graph labeled by partial labeling λ of edge-labeling Λ.

Ψ Λ Ψ ΛC C G( ): ( )= , where Λ ∈ ΛG, and GΛ is an edge-labeled graph of a connected graph G labeled by Λ.

Ψ Ψ Λ Ψ ΛC C CG( ): ( ) ( )= ≥0
: ∀Λ ∈ ΛG, where G is an unlabeled connected graph.

Gλ is an edge-labeled graph labeled by a partial labeling λ of an edge-labeling Λ. In general, Gλ is a subgraph of
edge-labeled graph GΛ labeled by the edge-labeling Λ. If the labeling λ is total, i.e., Gλ = GΛ then ΨC(Gλ) turns to
ΨC(Λ) which represents the Ψ number value of the edge-labeled graph GΛ. ΨC(G) represents the maximum ΨC value
among all of the ΨC(Λ). The ΨC(G) is defined for connected and unlabeled graphs. Gλ(x) denotes the k-edge-deleted
subgraph of Gλ, and x is the number sequence of the edge-labels of the deleted edges.

A graph G(V,E) can be said to consist of isolated vertices VY ⊆ V and the maximum edge-induced subgraph GX(V - VY,
E). In the formula of ΨC(Gλ(x)) the first term 2p is for the isolated vertices VY(Gλ(x)) in the graph, and the right hand of
the prime number P(i) represents the maximum edge-induced subgraph of Gλ(x). Since the graph Gλ is assumed to be
connected, the root node of the Ψ-tree does not contain any isolated vertices in the first place. On the other hand,
other nodes than the root possibly contain at most 2 isolated vertices. The Ψ-formula ΨC(Gλ(x)) is defined for graphs
with 4 or more edges, while the Ψ numbers of the smaller graphs of size ≤ 3 are predetermined as above.
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The edge-connected Ψ numbers ΨC(Gλ(x)) of k-edge-deleted subgraphs Gλ(x) is defined recursively for all number
sequences x ∈ Σ 3

σ  and ΨC(Gλ) is the case when x is the empty set φ, where σ is the label set of the partial labeling λ.

The computation of a ΨC(Gλ) forms a tree such that its nodes are Ψ numbers ΨC(Gλ(x)) in some computation level
0 ≤ i ≤ | σ | - 3. Every node in level i is an edge-deleted subgraph of its parent node, and the number of edges (excluding
the edge incident with the parent node) of an inner node is | σ | - i. Every leaves are the union of one of five small
graphs of size 3 with prescribed ΨC numbers and  p isolated vertices, where 0 ≤ p ≤ 2. The number sequence x ∈ Σ 3

σ

represents the set of deleted edges in the upper levels in that order, and works as an indicator on the Ψ-tree, while
x represents the remained edges in Gλ(x). Note that the edge-labeled graph Gλ is assumed to be connected but the
subgraphs Gλ(x) is not necessarily connected.

To abbreviate the description we introduce some auxiliary notations. Let e1 and e2 be edges. We write e1-e2 when e1

and e2 are adjacent as well as we write e1…e2 when e1 and e2 are not adjacent. G(T) denotes the edge-induced
subgraph of G induced by edge subset T ⊆ E(G).

6.1 Given two connected graphs G and H of size ≥ 5, and a mapping Θ: E(G) →  E(H). If for all edge-triples T of G,
G(T) is isomorphic to H(Θ(T)), then G and H are isomorphic and the mapping Θ  is an edge-isomorph mapping.

Proof: Assume that there exists a mapping Θ: E(G) → E(H) such that for all edge-triples T of G, edge-induced
subgraphs G(T) and H(Θ(T)) are isomorphic. Let an arbitrary labeling of G be L. We will transcribe the labeling L to
a labeling L’ of H and show that L and L’ forms an isomorph mapping. There are 5 kinds of edge-triple graphs,
3K2, K2+P2, P3, K1,3, and K3. If G and H have no K1,3, then graphs are either Pn-1 or Cn. In this case it is easy to certify
that G and H are isomorphic. Hence assume that G has a K1,3. Let the center vertex of the K1,3 be x and the label of x
be l, where L(x) = l. Then there exists a corresponding K1,3 in H and we can determine the label of the center vertex x’
of the K1,3 in H like L’(x’) = l. Secondly there exist edges e of G and e’ = Θ(e) of H such as e = (x,u) and e’ = (x’,v). Since
the labels of the vertices x, u and x’ are predetermined, we can decide the label of the vertex v in H like L’(v) = L(u). As
the graphs are connected, we can decide all of labels in H  by repeating the similar operation and eventually obtain
the total labeling L’ of H. However it is probable that there happen some conflicts on this labeling operation.

Let T = (x,y,z) be an edge-triple in G and the corresponding edge triple  in H be T’ = (x’,y’,z’), where Θ(x) = x’, Θ(y) =
y’, and Θ(z) = z’. Suppose that a label conflict happened at the edges z and z’. Then we may infer that x and y are
incident with different vertices of z, on the other hand x’ and y’ are incident with a same vertex of z’, and vice versa.
However in this case G(T) is a P3 or a K3, and H(T’) is a K1,3, hence G(T) is not isomorphic to H(T’). Therefore such
cases are excluded by the premise. Most possible conflicts are excluded by this reason. Now consider the case when
both G(T) and H(T’) are P3 but the edge sequences are not coincident such as x-y-z and y’-x’-z’, where T = (x,y,z), and
T’ = (x’,y’,z’). We will show that by the premise, such a discrepancy does not happen. As the size of graphs is larger
than 4, there exist another edge-triples (y,z,a) and (y’,z’,a’), where Θ(a) = a’. Since y’ and z’ are not adjacent but y and
z are adjacent, a’ must be adjacent to either y’ or z’.

Assume a’ is adjacent to z’, then (y’,z’,a’) becomes K2+P2. To let (y,z,a) be K2+P2, a must be non-adjacent to both y
and z. Note that a’ cannot be adjacent to x’ because otherwise (x’,z’,a’) forms either K1,3 or K3, and (x,z,a) can be
neither of them as x and z are not adjacent. In this formulation (x’,z’,a’) forms a P3. To let (x,z,a) be P3, a must be
adjacent to both x and z. This makes (x,y,z,a) a C4 and it requires a’ to be connected with y’. Obviously the
discrepancy between C4(x,y,z,a) and C4(y’,x’,z’,a’) cannot be detected by the edge triples on the C4. However as the
size of graphs is larger than 4, we have the fifth edges b and b’ = Θ(b) in the graphs. Without loss of generality we
assume that b and b’ are not adjacent to any other four edges in the C4. Then edge-triple (b,x,z) is a 3K2 and (b’,x’,z’)
is a K2+P2. Hence a contradiction. Note that it is easy to certify that even if b and b’ are adjacent to the edges in the
C4, a similar argument is valid. That is to say, a disagreement on a pair of C4 indicates a contradiction anytime.

Now assume a’ is adjacent to y’ then (y’,z’,a’) becomes a K2+P2. To make (y,z,a) a K2+P2, a must be non-adjacent to
both y and z. However in this case, (x,y,a) forms a K2+P2 and (x’,y’,a’) forms one of P3, K1,3, and K3. Thus a
contradiction again. Assume a’ is adjacent to both y’ and z’, then (y’,x’,z’,a’) becomes a C4. Such a case is already
simulated at the previous paragraph. Thus in any case accompanied with discrepant edge sequences of P3 like x-y-z
and y’-x’-z’, we encounter a contradiction to the premise. In other words, no discrepancy exists in the edge
sequences of pair of corresponding P3 under the given premise.
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Since 3K2 and K2+P2 have at most two neighboring edges, they do not cause any conflicts in the labeling. K1,3 and
K3 have three edges mutually adjacent but the edge-adjacency in them are determined definitely regardless the order
of the edges. Thus P3 is the only one case which has the probability of labeling conflicts. However we already
confirmed that every pair of P3 always coincide. Therefore we can transcribe the labeling L of G to the labeling L’ of
H with no conflicts as far as all of edge-triples are pairwise isomorphic. Suppose a mapping Φ: V(G) → V(H) such as
Φ = L’-1L. As we assigned the same label to the corresponding vertices, without loss of generality for all i ∈ σn, L(ui)
= L’(vi) = i and Φ(ui) =  L’-1L(ui) = vi. Then for all edges e = (ui,uj) ∈ E(G), Θ(e)  = Φ(e) = Φ(ui,uj) = Φ(ui)Φ(uj) = vivj =
e’ ∈ E(H). Hence G and H are isomorphic and the mapping Θ is an edge-isomorph mapping. <

Remark: 2P2 is a disconnected graph with 6 vertices and 4 edges. Lemma 6.1 does not hold for 2P2. Say G = (1,2) +
(3,4) and H = (1,4) + (2,3), where {1,...,4} are edges of the graphs and (i,j) is a P2 with adjacent edges {i,j}. Obviously
for all i ∈ {1,...,4}, edge-triple subgraphs G - i and H - i are isomorphic but the mapping Θ: (1,2,3,4) → (1,2,3,4) does
not give the edge-isomorphism. P4 is a connected graph with 5 vertices and 4 edges. Lemma 6.1 does not hold for this
graph too. P4 has 2 P3 and 2 K2+P2 as its edge-deleted subgraphs. Two P4 with edge sequences 1-2-3-4 and 4-2-3-1
have isomorphic edge-triple subgraphs, but the mapping Θ: (1,2,3,4) → (1,2,3,4) is not an edge-isomorph mapping.
As was described above, this situation is same for C4 case. That is, the lemma does not hold for graphs of order ≤ 4.

The line graph L(G) of G is a graph whose vertex is an edge of G and two vertices i and j are adjacent iff edges i and
j are adjacent in G. If G and H are isomorphic, then obviously L(G) and L(H) are isomorphic. For the converse, Hassler
Whitney proved the following theorem in 1932 [40]. We will give another proof of 6.1 using this theorem .

Whitney’s Theorem: Let G and H be connected graphs with isomorphic line graphs. Then G and H are isomorphic
unless one is K3 and the other is K 1,3.

Alternative proof for 6.1: Assume that there exists a mapping Θ: E(G) → E(H) such that for all edge-triples T of G,
edge-induced subgraphs G(T) and H(Θ(T)) are isomorphic. If the adjacency of all edges of the graphs are known,
then we can compose the line graphs L(G) and L(H) of G and H respectively, and prove the statement easily by
applying Whitney’s theorem. There are 5 kinds of edge-triple graphs, 3K2, K2+P2, P3, K1,3, and K3. Among them 3K2,
K1,3 and K3 give us complete information of the edge-adjacency of the edge-triples, whereas K2+P2 and P3 do not.

Let an edge-triple of a P3 be T1 and the other P3 be T2. If the intersection T1 ∩ T2 = {e1,e2}, then edges e1 and e2 are
adjacent in almost cases. While if e1 and e2 are in a C4, then e1 and e2 may not be adjacent. We can check if the edges
e1 and e2 are contained in a C4 or not in some exhaustive way. However as was mentioned in the previous proof, the
adjacency of e1 and e2 cannot de determined by the edge-triples in the C4 alone. Fortunately the size of graphs is
larger than 4 and we have always the fifth edge e5. There are three cases, (1) e5 is not adjacent to any edges in the C4.
(2) a vertex of e5 is incident with a vertex on the C4, (3) two vertices of e5 is on the C4.

In case (1) it is easy to certify that e1 and e2 are not adjacent. Because in this case the edge-triple (e1,e2,e5) forms a 3K2.
And this means that the edges are mutually not adjacent. Let us simulate the case (2). Let the C4 be e1-e2-e3-e4-e1 and
assume e5 and the adjacent edges e1-e2 forms a K1,3. Then from K1,3(e1,e2,e5), we know e1-e2, e2-e5, e1-e5, and from e1-e5

and K2+P2 (e1,e3,e5), we know  e1…e3, e3…e5. Further from e2-e5 and K2+P2 (e2,e4,e5), we know  e2…e4, e4…e5, and from
e1-e2, e1…e3, and P3(e1,e2,e3), we know e2-e3. As well from e1-e2, e2…e4, and P3(e1,e2,e4), we know e1-e4, and from e2-e3,
e2…e4, and P3(e2,e3,e4), we know e3-e4. Thus we get the full information of the adjacency with respect to the five edges
(e1,e2,e3,e4,e5). In the similar way the case (3) can be certified easily. Consequently if there exist at least two P3 which
contain an edge pair (ei,ej) in common, then we can definitely decide the adjacency of the edge pair (ei,ej). Since
graphs are connected and the size is larger than 4, every adjacent edge pair (ei,ej) of the graphs is in at least one P3.

Suppose an edge pair (e1,e2) which is in P3(e1,e2,e3), but not contained in other P3. Without loss of generality we
assume that the P3(e1,e2,e3) is in the form e1-e2-e3. Further we assume that e1 is adjacent to no other edges e than e2.
Because otherwise the edge-adjacency is collectively decided by K1,3(e1,e2,e), or the hypothesis “(e1,e2) is in only
one P3” shall be broken by P3(e,e1,e2). Adding to it we assume that e2 is adjacent to no other edges than e1 and e3 by
the same reason. Then there exists P3(e2,e3,e4) and (e1,e2,e3,e4) forms a P4: e1-e2-e3-e4 for there is no other edges than
e3 which have additional adjacent edges. By the premise the graphs have more than 4 edges, and there exists the fifth
edge e5 in the graph. It is enough to consider the following two cases. One is the case where (e1,e2,e3,e4,e5) forms a P5:
e1-e2-e3-e4-e5. And the other is the case where e5 is connected to e3 and (e3,e4,e5) forms a K1,3. In either case it is no hard
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to show that the edge-triple subgraphs of the edge-quintuple (e1,e2,e3,e4,e5) determines the adjacency of all edges.
The former case is much easier. For the latter case, K1,3(e3,e4,e5) determines the connections, e3-e4, e4-e5, and e3-e5.
From e4-e5 and K2+P2(e1,e4,e5), we know e1…e4, e1…e5. From e4-e5 and K2+P2(e2,e4,e5), we know e2…e4, e2…e5. As well
from e3-e4 and K2+P2(e1,e3,e4), we know e1…e3, then from e1…e3, and P3 (e1,e2,e3), we obtain e1-e2, e2-e3.

Thus we can decide all of the edge-connections in G from the set of edge-triple subgraphs of G and compose the line
graph L(G) of G. Since there is a mapping Θ: E(G) → E(H) and for all edge-triples T of G, G(T) ≅ H(Θ(T)), the adjacency
of the edges are exactly same for the two graphs. Therefore it is sure that we can compose the line graph L(H) of H
as well as L(G), and L(G) is isomorphic to L(H), while Θ turns to an isomorph mapping V(L(G)) → V(L(H)).
Consequently by Whitney’s theorem, G and H are isomorphic and the mapping Θ is an edge-isomorph mapping. The
exception of K1,3 and K3 case in Whitney’s theorem is excluded by the size boundary of the premise. <

Remark: It is easy to show that (1) Whitney’s theorem and (2) lemma 6.1 are equivalent for all graphs of size ≥ 5.
If the line graphs L(G) and L(H) are isomorphic, then there exists an isomorph mapping Θ: V(L(G)) → V(L(H)) and for
all vertex-triples S of L(G), the induced subgraphs of L(G) and L(H) respectively induced by S and Θ(S) are
isomorphic. Obviously Θ is also an edge-isomorph mapping: E(G) → E(H) and for all edge-triples T of G, G(T) ≅
H(Θ(T)). Therefore (2) ⇒ (1). For the converse, the proof described above shows that if there exists an mapping Θ:
E(G) → E(H) and for all edge-triples T of G, G(T) ≅ H(Θ(T)), then L(G) ≅ L(H). Hence (1) ⇒ (2).

6.2 Given two connected graphs G and H, if there exist labelings Λ of G and Λ’ of H such that ΨC(Λ) equals ΨC(Λ’),
then G and H are isomorphic.

Proof: It is easy to see that the statement is true for graphs of size ≤ 4. Then we assume that the size of graphs ≥ 5 and
there exist edge-labelings Λ of G and Λ’ of H such as ΨC(Λ) = ΨC(Λ’). By the definition of edge-connected Ψ
numbers, for all x ∈ Σ 3

m ,  ΨC(GΛ(x)) and  ΨC(HΛ’(x)) must be exactly coincident. Let y be a number sequence in Σ 3
m

such as | y | = m - 3. Take ordered edge-triples w = (ei,ej,ek) in the graph G and w’ = (e’i,e’j,e’k) in H mapped by Λ and
Λ’ respectively corresponding to y, where Λ(w) = Λ’(w’) = y. Then it comes to be that the subgraph of G induced by
w is isomorphic to the subgraph of H induced by w’. Suppose a mapping Θ: E(G) → E(H) such as Θ =  Λ’-1Λ. Then
the mapping Θ apparently satisfies the condition of the lemma 6.1, therefore Θ is an edge-isomorph mapping E(G) →
E(H) and G and H are isomorphic. <

6.3 If two connected graphs G and H are isomorphic,  then for any edge-labeling Λ of G, there exists  an edge-
labeling Λ’ of H such that ΨC(Λ) equals ΨC(Λ’) .

Proof: The statement is trivially true for graphs of size ≤ 3. Then we assume that the size of graphs ≥ 4. Assume that
two graphs G and H are isomorphic. Then there exists an isomorph mapping Φ: V(G) → V(H) and an edge-isomorph
mapping Θ: E(G) → E(H) such that ∀e ∈ E(G), ∀e’ ∈ E(H): Φ(e) = e’ ⇔ Θ(e) = e’. Let an arbitrary edge-labeling of G
be Λ. We show that there is a labeling Λ’ of H corresponding to Λ such that  ΨC(Λ) = ΨC(Λ’). Suppose the edge-
labeling Λ’ of H such as Θ = ΘΛ-1Λ = Λ’-1Λ = Λ’-1ImΛ and Λ’ = ΛΘ-1. Let the Ψ-formulas of Λ and Λ’ be Ψ and Ψ’
respectively. For all number sequences x ∈ Σ 3

m , the edge-isomorph mapping Θ maps x in Ψ to the same x in Ψ’

through the identity Im. Consequently every subgraph GΛ(x) in Ψ is mapped to the corresponding subgraph HΛ’(x)
in Ψ’ by the mapping Θ. Hence for all x ∈ Σ 3

m , ΨC(GΛ(x)) = ΨC(HΛ’(x)). This yields ΨC(Λ) = ΨC(Λ’). <

6.4 Two connected graphs G and H are  isomorphic iff ΨC(G) equals ΨC(H).

Proof: Since ΨC(G) and ΨC(H) are both edge-connected Ψ numbers, if ΨC(G) = ΨC(H), then by 6.2, G and H are
isomorphic. The converse. Without loss of generality we assume that G and H are isomorphic but ΨC(G)  > ΨC(H).
Then by 6.3 there must be an edge-labeling Λ’ of H such that ΨC(G) = ΨC(Λ’) > ΨC(H). This conflicts the hypothesis
that ΨC(H) is the maximum edge-connected Ψ number of H. Hence the statement is deduced to be true. Note that this
theorem declares that ΨC(G) is a complete invariant of graphs.<
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6.5 Edge-Version Kelly-Ulam Conjecture: Two connected graphs G and H of size m ≥ 4 are isomorphic  iff there
exists a mapping Θ: E(G) → E(H) such that for all edges e ∈ E(G), G - e is isomorphic to H - Θ(e).

Failed Proof: Assume G and H are isomorphic. Then by 6.2, there exist edge-labelings Λ of G and Λ’ of H such that
ΨC(Λ) = ΨC(Λ’), and by the definition of edge-connected Ψ numbers, ∀i ∈ σm, ΨC(GΛ(i)) = ΨC(HΛ’(i)). Hence by 6.2
∀i ∈ σm, GΛ(i) ≅ HΛ’(i). Let ei and e’i be the edges such as Λ(ei) = Λ’(e’i) = i. Then Θ(ei) = e’i, and ∀i ∈ σm, G - ei ≅ H -
Θ(ei), where Θ is a mapping from E(G) onto E(H) such as Θ = Λ’-1Λ. Next we prove the converse, i.e., if G and H are
non-isomorphic, then for any mapping Θ: E(G) → E(H), there exists an edge ei in E(G) such that G - ei and H - Θ(ei)
are non-isomorphic. Assume G /≅ H. Then by 6.4, ΨC(G) ≠ ΨC(H) and by 6.3 and 6.2, and from the definition of
edge-connected Ψ numbers, ∀Λ, ∀Λ’, ∃i ∈ σm, ΨC(GΛ(i)) ≠ ΨC(HΛ’(i)). Hence

∀Θ = Λ’-1Λ, ∃i ∈ σm, ∀Λ ∈ ΛG, ∀Λ’ ∈ ΛH, ΨC(GΛ - Λ-1(i)) ≠ ΨC(GΛ - Θ(Λ-1(i))),

where Θ is a mapping: E(G) → E(H). Consequently ∀Θ, ∃ei ∈ E(G), ΨC(G - ei) ≠ ΨC(H - Θ(ei)). Then by 6.4, ∀Θ, ∃ei ∈
E(G), G - ei /≅ H - Θ(ei). <

Remark: We encountered the dead end again. The reasoning above is wrong as was in the other proofs previously
mentioned. The order of the quantifiers ∀Λ, ∀Λ’, ∃i cannot be rearranged like ∃i, ∀Λ, ∀Λ’. The situation has been
unchanged at all even though we came into the edge-reconstruction. In a sense it is much more critical than the
vertex-reconstruction. It is that all the edge-deleted subgraphs are isomorphic and all the deleted edges are
necessarily contradicting. Suppose two isomorphic graphs G and H, and an edge-isomorph mapping Θ: E(G) →
E(H). We say edges e ∈ E(G) and e’ ∈ E(H) are identical if Θ(e) = e’. On the other hand if G and H are not isomorphic
but G - e and H - e’ are isomorphic, then we say that edges e and e’ are pseudoidentical. Similarly identical vertices
and pseudoidentical vertices are defined. It can be said that with respect to two graphs G and H of a counterexample
of the edge-version K-U, every edges in the graphs are pairwise pseudoidentical.

7. Edge-Version Kelly-Ulam Theorem

Consider the complement of a counterexample of edge-version K-U. If graphs G and H is a counterexample pair of
edge-K-U, then it is of course that G and H  is also a counterexample pair. Because if the subgraphs of G and H are
pairwise isomorphic, then of course the complement of them are isomorphic, while G /≅ H implies G /≅ H . Hence

G and H is also a counterexample pair. However a curious thing happens here such that the sets of subgraphs of
G and H are not the edge-deleted subgraphs but so to say the edge-augmented subgraphs. Now let us call such a
counterexample with opposite direction an inverse-phase counterexample. On the contrary an ordinary
counterexample shall be called a normal-phase counterexample. Graphs are classified into 4 subclasses as follows.

(1) Reconstructible and edge-reconstructible graphs
(2) Non-reconstructible but edge-reconstructible graphs
(3) Normal-phase edge-non-reconstructible graphs
(4) Inverse-phase edge-non-reconstructible graphs

A few questions arise: Are there any edge-counterexamples such as of both normal-phase and inverse-phase? Are
there normal-phase counterexamples with edges more than n(n - 1) / 4 or any inverse-phase counterexamples with
edges less than n(n - 1) / 4? Fortunately L. Lovász already answered this question showing that if a graph has more
edges than its complement then it is edge-reconstructible [26]. In other words, there exists neither normal-phase
counterexamples of size m > n(n - 1) / 4 nor inverse-phase counterexamples of size m < n(n - 1) / 4. So queer and bizarre
situation it is, and enough to give rise to a doubt for the existence of a counterexample of the edge-version K-U.

We should notice that the K-U problem has two faces, one is the K-U and the other is the Reconstruction. The first
face regards two non-isomorphic graphs G and H, and the second is for an independent graph G itself. The relation
between these two phases is not necessarily self-evident. Only it can be said to reflect the problem to distinguish
between oneself and others. We will dig up the problem a little further. Now we introduce three more Ψ numbers,
edge-labeled Ψ numbers ΨE, edge-deck Ψ numbers ΨD, and edge-fragment-deck Ψ numbers ΨF. The first Ψ
numbers is defined for edge-labeled graphs and the rest are for unlabeled graphs.
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, i < j ⇔ ΨC(GΛ[i]) ≤  ΨC(GΛ[j]), where

r is the number of the connected components of GΛ,
GΛ[i] is the i-th connected component of the edge-labeled graph GΛ, and
Λ ∈ ΛG, GΛ is an edge-labeled graph of G labeled by Λ.

Ψ Ψ Λ Ψ ΛE E EG( ): ( ) ( )= ≥0
: ∀Λ ∈ ΛG, where G is an unlabeled graph.

The edge-labeled Ψ number ΨE(Λ) can be regarded as an ordered sequence of edge-connected Ψ numbers ΨC of the
connected components of GΛ, where GΛ[i] denotes a connected component of the edge-labeled graph GΛ and the Ψ
numbers ΨC(GΛ[i]) are  arranged in the order of the value in the Ψ-formula ΨE(Λ). Each edge-labeling Λ of G has its
Ψ number ΨE(Λ) and ΨE(G) is the maximum value among them.

 ΨD(pK1):= 2p. Ψ Ψ
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,  r = | E | > 0, and i < j ⇔ ΨE(G - ei) ≤  ΨE(G - ej).

An edge-deck Ψ number is a collection of the edge-labeled Ψ numbers ΨE of the edge-deleted subgraphs of G.
ΨD(G) represents the condition of the edge-version K-U straightway. It is easy to see that with respect to two graphs
G and H, if ΨD(G) and ΨD(H) are coincident, then all of edge-deleted subgraphs of G and H are pairwise isomorphic.

 ΨF(pK1):= 2p, ΨF(pK1+K2):= 2p×3, ΨF(pK1+2K2):= 2p×5, ΨF(pK1+P2):= 2p×7, ΨF(pK1+3K2):= 2p×11,
 ΨF(pK1+K2+P2):=2p×13, ΨF(pK1+P3):= 2p×17, ΨF(pK1+K1,3):= 2p×19, and ΨF(pK1+K3):= 2p×23,

 where p is the number of the isolated vertices in the graphs.
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, r = | E | ≥ 4, and i < j ⇔ ΨF(G - ei) ≤  ΨF(G - ej).

The edge-fragment-deck Ψ numbers ΨF is defined recursively for all k-edge-deleted subgraphs of G with k  ≤ m - 3.
Each term ΨF(G - ei) in the formula ΨF(G) may not represent the edge-deleted subgraph G - ei itself, but rather
represents the deck of the subgraph. Even if ΨF(G) and ΨF(H) are coincident, it is not always that all of edge-deleted
subgraphs of G and H are pairwise isomorphic. It just says that the sub-decks represented by the Ψ numbers
ΨF(G - ei) and ΨF(H - e’i) are pairwise coincident. In the first formulas above, p is the number of the isolated vertices
in the graph. All of k-edge-deleted subgraphs appeared in the Ψ-formulas of a graph G of order n have the same
number n of vertices. Obviously any graph G has only one ΨD(G) and only one ΨF(G).

Let K(n) denote the set of all graphs of order n and K(n,m) denote the set of all graphs of order n and size m, where
K(n,m) ⊆ K(n). We may call the graph set K(n) the universal graph set (with order n). Let an arbitrary ΨF number be
ψ, then KF(ψ) denotes the set of graphs whose ΨF numbers are ψ. With respect to the graph set KF(ψ) of an
edge-fragment-deck Ψ number ψ, if | KF(ψ) | = 1, then we say that KF(ψ) is a proper-graphs and ψ is a proper ΨF

number. In the case of | KF(ψ) | > 1, we say that KF(ψ) is a contradict-graphs and ψ is a contradict ΨF number. As is
easily to be seen, an edge-fragment-deck Ψ number ψ can be regarded as a set of all of ΨF  numbers which appeared
in the Ψ-tree of the ΨF number ψ. Suppose two distinct ΨF numbers ψ1 and ψ2. If the ΨF number ψ2 appears in the
Ψ-tree of ψ1, then we say that ψ1 contains ψ2 and write ψ2 ⊂ ψ1.

11

7.1 Two graphs G and H are  isomorphic iff ΨE(G) equals ΨE(H).

Proof: Without loss of generality we assume that the number of the connected components of G and H are same. Let
k  be the number of the connected components of G and H, and G[i] and H[i] be the connected components of them
respectively. Assume G and H are isomorphic. Then there exists a mapping Φ: σk → σk such as ∀i: G[i] ≅ H[Φ(i)].
Hence by 6.4, ∀i: ΨC(G[i]) = ΨC(H[Φ(i)]). This yields ΨE(G) = ΨE(H). Since the components G[i] and H[i] are not
connected this equation is valid regardless their labelings. Assume ΨE(G) = ΨE(H). Then by the definition of
edge-labeled Ψ numbers ΨE, ∀i: ΨC(G[i]) = ΨC(H[i]), and by 6.4, ∀i: G[i] ≅ H[i]. This yields G ≅ H. Note that this
theorem declares that ΨE(G) is a complete invariant of graphs. <

                                                                
11 We consider ΨF(G - ei) ⊂ ΨF(G) and regard that the ⊂ relation is transitive. Then we say that ΨF(G)  is a set of ΨF  numbers
and contains all of ΨF numbers appeared in the Ψ-tree of ΨF(G). Accurately ΨF(G) is said to be a set of ΨF  numbers of small
graphs of size 3, but ⊂ is not necessarily equivalent to the inclusion sign ⊆ in the Set Theory. Shall we use the term category here?
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7.2 For any two graphs G and H, the following two statements are equivalent.

(1) G and H are isomorphic iff ΨD(G) equals ΨD(H).
(2) G and H are isomorphic iff ΨF(G) equals ΨF(H).

Proof: Without loss of generality we assume that the size of graphs is larger than 3. From the definition of the
edge-deck Ψ numbers and the edge-fragment-deck Ψ numbers, it is easy to see that if G and H are isomorphic, then
ΨD(G) = ΨD(H) as well as ΨF(G) = ΨF(H). Further it is sure that if ΨD(G) = ΨD(H), then ΨF(G) = ΨF(H). Because by
the definition of edge-deck Ψ numbers, whenever ΨD(G) = ΨD(H), it comes to be ∀i ∈ σm: ΨE(G - ei) = ΨE(H - e’i).
Consequently by 7.1, ∀i ∈ σm: G - ei ≅ H - e’I, hence ∀i ∈ σm: ΨF(G - ei) = ΨF(H - e’I). This yields ΨF(G) = ΨF(H). Thus
(2) ⇒ (1) is apparent. Next for the direction (1) ⇒ (2), assume (1) is true. We will prove (2) by a mathematical induction.

Assume that there exists a natural number k , and (2) is true for any graphs G and H of size ≤ k . Suppose two graphs
G and H of size k  + 1, and assume ΨF(G) = ΨF(H), then by the definition of edge-fragment-deck Ψ numbers, ∀i ∈ σm:
ΨF(G - ei) = ΨF(H - e’I). Since the size of G - ei and H - e’i is k , by the induction hypothesis, G - ei ≅ H - e’i. Hence by
7.1, ΨE(G - ei) = ΨE(H - e’i). This yields ΨD(G) = ΨD(H) and by the assertion (1), G and H are isomorphic. It is easily
certified that (2) is true for small graphs of size ≤ 4 and it completes the induction. Thus we have (1) ⇒ (2). <

7.3 Let the edge-fragment-deck Ψ number of a complete graph Kn be ψn. then for any natural number n, the graph
set KF(ψn) is a proper-graphs.

Proof: Assume KF(ψn) is not a proper graphs. Then there must be at least two graphs which are not isomorphic in the
KF(ψn). However there exists no other graphs than Kn in the graph class K(n, n(n - 1) / 2) and obviously KF(ψn) ⊆ K(n,
n(n - 1) / 2). Therefore the graph set KF(ψn) must be a singleton set, and it comes to be a proper graphs. <

7.4 Suppose two edge-fragment-deck Ψ numbers ψ1 and ψ2. If ψ1 contains ψ2 and KF(ψ2) is a contradict-graphs,
then KF(ψ1) is also a contradict-graphs.

Proof: Assume KF(ψ1) is a proper graphs, i.e., every graphs in the graph set KF(ψ1) are isomorphic. Since KF(ψ2) is a
contradict-graphs, KF(ψ2) contains at least two non-isomorphic graphs G2 and H2. Let two graphs contained in
KF(ψ1) be G1 and H1 such that G1 has a G2 as its subgraph and respectively H1 has a H2 as its subgraph. We assume
that even if G1 and H1 have a plural of G2 and H2, G1 never has a H2 and H1 never has a G2. Suppose edge-labeled Ψ
numbers ΨE(G1) and ΨE(H1) and let Ψ and Ψ’ be the Ψ-trees of ΨE(G1) and ΨE(H1) respectively.

Assume G1 and H1 are connected. Then all of edge-induced subgraphs of the graphs G1 and H1 of size ≥ 3 appear in
the Ψ-trees. To be ΨE(G1) and ΨE(H1) coincident, every corresponding nodes have an exactly same value of
edge-connected Ψ numbers ΨC. Since G1 and H1 have a pair of non-isomorphic subgraphs G2 and H2, it is sure that
ΨE(G1) and ΨE(H1) cannot be equal. Assume G2 and H2 are connected. Then by 6.4, ΨC(G2) ≠ ΨC(H2). Of course there
exist no labelings which make them equal. Now assume G2 and H2 are disconnected, then there always exist some
non-isomorphic connected components of  G2 and H2, and they cannot have the same edge-connected Ψ numbers.

This reasoning is valid even if G1 and H1 are disconnected. Hence by 7.1, G1 and H1 are not isomorphic. This
contradicts the hypothesis that KF(ψ1) is a proper graphs. To confirm this reasoning, consider the case when all of
subgraphs of G1 and H1 are pairwise isomorphic. Even in such a case, we can replace an occurrence of G2 (H2) in H1

by H2 (respectively G2) and get a non-isomorphic pair of graphs G1 and H1. This operation does not change the
edge-fragment-deck Ψ number ΨF(H1) but necessarily changes the edge-labeled Ψ number ΨE(H1). Consequently
the graph set KF(ψ1) of a ΨF number ψ1 which contains a contradict ΨF number is also a contradict-graphs. <

7.5 Two graphs G and H are isomorphic iff ΨF(G) equals ΨF(H).

Proof: Without loss of generality we assume that the size of graphs is larger than 3. From the definition of edge-
fragment-deck Ψ numbers, it is easy to see that if G and H are isomorphic, then ΨF(G) = ΨF(H). Then we prove the
converse by a reductio method, i.e., we prove that there does not exist a counterexample of the statement saying that
if G and H are non-isomorphic, then ΨF(G) ≠ΨF(H). Assume that there exists a pair of counterexample graphs G and
H of size ≥ 4 such as G /≅ H and ΨF(G) = ΨF(H) = ψ. Let the order and the size of G and H be n and m respectively, then
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G,H ∈ KF(ψ) ⊆ K(n,m) ⊆ K(n). Suppose the complete graph Kn of order n and let the ΨF number of Kn be ψn. By the
definition of the edge-fragment-deck Ψ numbers, it is obvious that ψn contains every ΨF numbers of any graphs of
size ≥ 4 in the universal graph set K(n), i.e., ∀G ∈K(n), | E(G) | ≥ 4: ΨF(G) ⊂ ψn = ΨF(Kn). Consequently it turns out to
ψ ⊂ ψn. By the hypothesis, KF(ψ) is a contradict-graphs, then by 7.4, ψn must be a contradict-graphs. However from
7.3, a complete graph cannot be in a contradict-graphs. Hence a contradiction, and the consequence comes to be
that the statement is true. Note that by this theorem and 7.2, ΨF(G) and ΨD(G) are complete invariants of graphs. <

7.6 Edge-Version Kelly-Ulam Theorem: Two graphs G and H of size m ≥ 4 are isomorphic iff for each  i ≤  m, G - ei

is isomorphic to H - e’i, where ei and e’i are edges of G and H respectively .

Proof: By 7.2 and 7.5, the statement (1) “G and H are isomorphic iff ΨD(G) equals ΨD(H)” is true. Consequently if G
≅ H, then ∀i ∈ σm: ΨE(G - ei) = ΨE(H - e’i), and by 7.1, ∀i ∈ σm: G - ei ≅ H - e’i. Next for the converse, assume ∀i ∈ σm:
G - ei ≅ H - e’i, then ∀i ∈ σm: ΨE(G - ei) = ΨE(H - e’i). This yields ΨD(G) = ΨD(H). Hence by (1), we get G ≅ H. <

8. Conclusion

We finally succeeded to prove the edge-version K-U using four kinds of Ψ numbers, edge-connected Ψ numbers
ΨC, edge-labeled Ψ numbers ΨE, edge-deck Ψ numbers ΨD, and edge-fragment-deck Ψ numbers ΨF. Lemma 6.1 is
the cornerstone of the formulation of all the edge Ψ numbers. It was exhibited that the lemma 6.1 is equivalent to the
Whitney’s Theorem. The ΨE is the most standard edge Ψ numbers and it is assured that if ΨE(G) = ΨE(H), then G and
H are always isomorphic. An edge-deck Ψ number ΨD(G) can be regarded as a collection of edge-labeled Ψ numbers
ΨE(G - i) and it represents the edge-deck of G. If ΨD(G) = ΨD(H), then all of edge-deleted-subgraphs are isomorphic.
However if edge-K-U is invalid, it is possible that G and H are non-isomorphic. The edge-fragment-deck Ψ numbers
ΨF is defined recursively and represents so to say the fragmented deck of G. The equivalence of the two edge Ψ
numbers, ΨD and ΨF was proven.

We call a ΨF counterexample a contradict ΨF number. For the edge-fragment-deck Ψ numbers, it is possible that not
only graphs G and H are non-isomorphic, but also there exist subgraphs which are not isomorphic, even if their
edge-fragment-deck Ψ numbers are entirely equal. Because it is possible that a contradict ΨF number contains
contradict ΨF numbers. Two graphs with the same ΨF number possibly have non-isomorphic subgraphs since a
contradict ΨF number indicates a set of non-isomorphic graphs. This is quite different from edge-deck Ψ numbers
ΨD. A  counterexample ΨD never contains a non-isomorphic subgraph. We proved that there exist no contradict ΨF

numbers by showing that the assumption of the existence of contradict ΨF numbers results an absurdity.

What about the vertex-version K-U. It can be said that we can define vertex-deck Ψ numbers and vertex-fragment-
deck Ψ numbers as well as in the edge-version K-U. Furthermore we can prove similar theorems to 7.2 and 7.4 for it.
However we don’t know how to get the theorem 7.5 as we have not the alternative lemma 7.3 for the vertex-version
K-U. The vertex-fragment-deck Ψ number of any complete graph Kn does not contain a contradict Ψ number.
Conversely it is possible that there exist an infinite number of vertex-fragment-deck Ψ numbers containing a
contradict Ψ number. In consequence, we cannot help considering that it is probable that a K-U counterexample
exists. Although it seems very difficult to compose a counterexample.

We separate a labeled graph G into two parts, F0 and F1 such as a vertex-deleted subgraph and the rest of the graph.
The F1-friction is a contradiction at the F1 part which represents the adjacency between the deleted vertex and other
vertices. This part simply forms a star.12 Of course for any pairwise isomorphic subgraphs G - i and H - i, the two stars
are always isomorphic as the numbers of edges are same, but some of the edges in the stars are at bad positions on
the labelings. A remarkable point is that each vertex-deleted subgraph pair of a K-U counterexample must have the
F1-friction with no exception. It is really difficult to make the requirement compatible with the ultimate condition such
as the graphs are nearly isomorphic but just separated by skin-deep. K-U counterexamples are isolated each other
and floating like a big soap-bubble in the sky. How can we find such a counterexample? We dare to say that the K-U
Conjecture is not merely a hard problem but should be regarded as a paradox. We left our failed proofs as it was in the
article for the sake of exposing the dead end of the proofs.

                                                                
12 A K1,n is called a star.
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Incidentally the relation between pseudoidentity and pseudosimilarity is not so clear, where two vertices u and v are
pseudoidentical if G and H are not isomorphic but G - u and H - v are isomorphic. We know that a graph G cannot have
all its vertices mutually pseudosimilar. On the other hand the pseudoidentity in a counterexample occurs at every
vertices in the graph. But it is also known that there exist graphs in which every vertex has a pseudosimilar mate [20].
Is F1-friction equivalent to pseudosimilarity? At first sight it seems not likely. Pseudosimilarity is defined with
respect to graph automorphism on the graph itself, while pseudoidentity regards non-isomorphism between distinct
graphs. Nevertheless it may happen that they are involving each other since the reconstruction is a problem on a
graph G itself. The pseudosimilarity still has a great chance to refute the existence of F1-friction.13

The difficulty of the K-U Conjecture looks so supernatural and desperate. Like a tall and cruel stone wall, it blockades
human, our mortal existence far from the solution. What shall we name this barrier? A book written by Ilya Prigogine
a Nobel laureate chemist, and Isabelle Stengers a historian of science says, “We cannot provide a situation evolving
to the past because infinite information is indispensable to reverse the direction of the time.”. They call it “entropy
barrier” comparing the “velocity of light” as the upper bound of the speed of signal transmission which is the basis
of Einstein’s relativity and prohibits a time-travel to outstrip the light.14 In this sense, to find a counterexample of K-U
may be comparable to Michelson-Morley experiment of measuring the velocity of light which ultimately denied the
concept of ether. They ask “What’s the particular structure of a dynamic system which are able to distinguish the
past and the future? How much the degree of the minimum complexity to be necessary for that?”. If we succeed to
discover a counterexample of K-U, it must be a very primitive answer to this question from mathematics. However it
is somehow unbelievable that it will be given as some constant number.15 So our withheld estimation is infinite...
Our final conclusion comes to be that K-U is a paradox deeply relevant to the irreversibility of the time.
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