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Abstract

An orientation of an undirected graph G is a directed graph D obtained by giving an orientation to every
edges of G. An orientation D is complete iff whenever there are edges ab, bc, thereisan edge acin D. A
graph G istransitive iff G has a complete orientation. If there are edgesab, bc and an anti-path (a,c) (i.e., a
path in the complement of G) in the subgraph induced by the neighbors of b in G, the triplet (a,b,c) is
called a pivot on G and the middle vertex b is the pivot-vertex of it. We proved in T14 that a graph G is
trangitive iff G has no pivot-cycles (i.e., a closed odd sequence of pivot-vertices) and got a polynomial-
time algorithm to recognize a trangitive graph and to construct a complete orientation of the graph.

If agraph G has a pivot-cycle and the size of the cycle equalsthe size of G, we say that the pivot-cycleis
spanning. An intransitive graph G is called minimally intransitive iff G becomes transitive by removing
any vertex of G. We say a graph G is strongly intransitive iff both G and the complement of G are
minimally intransitive and have a spanning pivot-cycle. We proved in T 24 that odd holes and odd antiholes
are strongly intransitive graphs. Regarding the long standing conjecture presented by Berge known as the
Strong Perfect Graph Conjecture, we propose the following:

C1: A gtrongly intransitive graph is minimally imperfect.
C2: A strongly intransitive graph is either an odd hole or an odd antihole.
C3: A graph is perfect iff it has no srongly intransitive graphs.



Comments

This paper is still in the state of draft as easily to be seen. Currently we have seven pending theorems, T 15,
T16, T26, T28, T30, T31, T170 relevant to our conjectures. We performed this study on the net, have
found so many colleagues and teachers there and get a plenty amount of precious information from
enormous on-line stuffs and books. It happened at amailing list theory-edge” in the end of the 20" century
and has been continuing up tonow.

On Octover 20, 2000, a mail titled “odd holes, perfect graphs, and theta fn” was posted to the list. It was
written by E. Lehman, a member of the list to digest some indigestion in the process of reviewing A.
Plotnikov's paper [19]. The paper regarded the Minimum Clique Partition Problem and presented an
approach through transitivity and some hereditary property of graphs.

Due to the mail we came to know those things for the first time such as a hole, perfect graphs, the theta
function, and Berge's conjecture. The theta function, sometimes called the sandwich function, calculates
Lovész's number 6 between the largest cligue size w and the chromatic number x of a graph in
polynomial time [13]. It isknown NP-complete in general to calculate those numbers. However as wand x
coincide for a perfect graph (just the definition of perfect graphs), one can get the solution in polynomial
time. This was presented by Groétschel, Lovétz, and Schrijver in 1981 [7]. Then we understood that it
would be solved anyway.

But what's an odd hole? It was the question. After a mean while, we reached at the notion OZ-cycle. A
trangitive contradiction caused by an OZ-cycle in a plotnikov digraph, i.e., an orientation of an undirected
graph, is inevitable by any means, surely a very strange cycle. We ascertained that odd holes and odd
antiholes are the representatives of thiskind (T 18). But how can we formulate and give it a reasoning?

Finally we found out a smple fact that the transitive relation is entirely local. We know that an eternal
triangle is fatal at any time. We summarized thisinsight to T11: the Triple Contradiction Theorem which
states“a directed graph D istransitively complete iff every vertex triple of D isnot in triple contradictiori .
Some authors regard it as a well-known obvious observation. Well, how can the locality be transported to
the remote?

Perhaps the answer is “ by paths’. We found two kinds of particular paths, zZigzag paths and twisted paths.
Those are strands of twisted triple strings. Roughly speaking, all of paths in the pivot-map” of the delta
graph” of G are zigzag and all of pathsin the core-map " are twisted (T152). If the all paths are linear, the
trangitive orientation is easily completed but it returnsto itself in circulation. An OZ-cycle, i.e., odd zigzag
cycle returns the transitive contradiction.

The OZ-cycle was found first by Ghouilla&Houri, 1962 [4], and independently by Gilmore and Hoffman,
1964 [5]. Our earliest conclusion was that a graph G is transitive iff G has no OZ-cycles. This assertion
holds (T25). However it was disproved temporarily by G. Stertenbrink. (At the time we cannot help
considering that a cycle must be elementary. Otherwise we had already solved it then.) He showed a
counter example which has no elementary OZ-cycles but is intransitive. It was the blessed complement of
C,. Soon the fact was uncovered that every antihole greater than four isintransitive (T 20).

P theory-edge: http://groups.yahoo.com/group/theory-edge
pivot-part, core-part, delta graph: Shall be described later.



To prove it, we invented A-cycle and round-fan, and succeeded to show that all antiholes except ~C, (i.e.
the complement of a cycle of size 4) are round-fans in fan-contradiction. Consequently the revised T14
came to be “a graph G is trangitive iff it has no OZ-cycle and no round-fan in fan-contradiction”. This
formulation looked like too artificial and this time a counterexample was found by the author himself.
Gradually we noticed that to formulate transitivity, we have to deal with the complements of graphs. A fan
isasubgraph of G induced by V, O {p}, where V, isthe vertex set of a connected component of the induced
subgraph of ~G by the neighbors of the vertex p in G. The notion of fan was discovered by Tibor Gallai in
1963 [3], athough Gallai himself did not give it a name.

Now, we have the final version of T14, i.e.,, “agraph G istransitive iff G has no pivot-cycles’ . Pivot-cycle
isageneralization of OZ-cycle and a pivot isa kind of fan. So we and Gallai share the notion pivot-cycle.
Some literature deal with asteroids with respect to anti-transitive graphs (i.e., co-comparability graphs).
We know that an asteroid is nothing but a reversed pivot-cycle. Gallai [3] presented 19 patterns of
minimally intransitive graphs. Among them, 1 is odd hole, 3 are odd cycles with two neighbors and
remaining 15 are (the complement of) 3-asteroids. He proved every intransitive graph contains one of
these 19 minimally intransitive graphs.  (See Appendix, the Gallai’s Gamma Table.)

We construct the delta graph G, of G. A deltaisa 2-path in G and a vertex of G, isadeltaof G. Wecall a
vertex of G, a point and an edge a line. If the edges in G of a delta pair forms a 3-path in G, the
corresponding point pair isjoined in G,. A delta (a,b,c) iscalled a pivot if there isan anti-path connecting
a with c in the subgraph induced by the neighbors of the middle vertex b in G. A point in G, is called a
pivot-point if the corresponding deltais a pivot, otherwise called a core-point. Accordingly the delta graph
G, is partitioned into two parts of the pivot-map and the core-map. An odd cycle in the pivot-map
correspondsto a pivot-cycle in G.

The following statements are equivalent for an undirected graph G (T25).
(1) Gistranstive.

(2) G hasno OZ-cycles.

(3) G hasno pivot-cycles.

(4) G hasno elementary pivot-cycles.

(5) ~G hasno asteroids.

The proof of (2) was presented by Ghouilla-Houri [4], Gilmore & Hoffman [5] in early 60’. (2) isthe base
of most succeeding studies including implication class with respect to the transitivity. Gallai [3] solved
(3), (4), (5). We proved them solely without using any preceding results. (In our formulation, the
equivalence of (3) and (5) is given by the definition from the beginning. (4) remains for our homework.)

What the author is concerning is that none of literature mentioned the loopsin OZ-cycles. In his humble
opinion, to establish (2), it is necessary to alow loops in OZ-cycles. Otherwise infinite counterexamples
will beinevitable. Adding to the above, Gallai [3] showed “G istransitive iff ~G has no simple asteroids’.
However the usage of “simple” in his paper isvery particular and not usual. Some graphs G are minimally

" implication class: Graph G(V,E), binary relationT on E: abl'a’b’ -~ a=a’ andbb’ OEorb =1’ and aa 0 E. The reflexive, transitive

closure T of I" is an equivalence relation on E, and partitions E into the implication classes of G [21].



intransitive but the asteroid in ~G is not simple in normal meaning.

Gallai [3] congtructed a fan graph to prove (3) and (4). The fan graph F is a derived graph from G such
that a vertex of F_ is a fan f(p,aC), where p is a vertex of G and aC is the vertex set of a connected
component of ~N(p), and two verticesf,(p,,aC,) and f,(p,.aC,) of F, are joined iff p, 0 aC, and p, 0 aC,. An
odd cycle in the fan graph F, correspondsto a pivot-cycle of G.

Our proof of T14 is done in a constructive way, i.e., by presenting algorithm A to construct a complete
orientation of a transitive graph. The algorithm recognizes a transitive graph in polynomial time. The time
complexity of algorithm A is estimated O(n°). The remarkable point of our algorithm is that once the delta
graph is constructed, all of orientationsis determined straightforwardly. The bottleneck of the algorithmiis
the initializing cost of the delta graph. Some linear time algorithms are aready known for graph
trangitivity [17], [21]. They avoid such initial cost in a highly technical way and apply a divide & conquer
method by decomposing the objective graph. We admit that the efficiency is not our principle goal.

Our main target isto prove positively the Srong Perfect Graph Conjecture proposed by Claude Berge [1],
that is, “a graph G is perfect iff neither G nor the complement contains an odd cycle of length at least five
asan induced subgraph. In spite of the dedicated enormous amount of studies, the conjecture is still open
after 40 years. The course we chose to attack the SPGC peek is the trangtivity. The author thinks the
perfection of graphs and the transitivity have a very strong connection with each other. Some large
subclasses of perfect graph class can be characterized by transitivity. Interval graphsis a subclass of anti-
trangitive graphs, permutation graphs is both transitive and anti-transitive graphs, and so on.

We provided three (incomplete) solutions, i.e., Proof 1, 2, and 3 of T17 for SPGC. 1 and 3 are based on
the idea of getting a transitive / perfect supplement graph by adding edges to a graph which has no odd
holes and no antiholes without increasing the maximum clique size. Wagler [22] showed in her Ph.D.
thesis, there are such critically perfect graphs that cannot be reached by the deletion or the addition of one
edge. This meansthat theAtlas of the perfect graphsisvery intermingled like fractals.

The difficulty of course 3 is in the absence of an established method to recognize or compose a perfect
graph. The course 1 is somehow hopeful as it substitutes the transitivity for the perfection. We start at the
initial digraph D having all of vertices of G and no edges. Trivialy the initial digraph D is transitively
complete and we move an edge from G to D step by step. If D isnot complete, add a supplemental edge to
D until it becomes complete. If the addition of edges do not increase the maximum clique size till the end,
we have done.

Currently we are concentrating to the course 2, where we introduce the notion of strongly intransitive. An
intransitive graph G is minimally intransitive iff G becomes transitive by removing any vertex of G. We
say a graph G is strongly intransitive iff both G and the complement of G are minimally intransitive and
have a spanning pivot-cycle. To solve the SPGC, we must prove the following 6 theorems.

T24: Odd holes and odd antiholes arestrongly intransitive graphs.

T26% A strongly intransitive graph isimperfect.

T27: A strongly intransitive graph isa minimally imperfect graph.

T28%* The maximum clique size and the chromatic number of a graph which has no strongly intransitive
graphs are coincident.

T29: A graph which has no strongly intransitive graphsis perfect.



T30%* A strongly intransitive graph is either an odd hole or an odd antihole.

Among them, T24, T27, and T29 are already given proofs. T26, T28, and T30 are unproved. Since the
representation of strongly intransitive graphs is very clear, we suppose to solve T26 and T30 is very
hopeful. T28 may be not so easy. If we could prove T30, the probability for SPGC becomes very high, on
the other hand, even if we proved T26, there remains some probability that the strongly intransitive graphs
isnot identified with the class of odd holes and odd anti-holes.

Berge [1] posed in 1960 one more conjecture called the Weak Perfect Graph Conjecture. It was proved by
Lovétz, 1972 [16] and now known as the Perfect Graph Theorem. It states that a graph is perfect iff its
complement is perfect. Between those two conjectures, Vasek Chvétal, 1984 [2] interposed a conjecture
called the Semi-Strong Perfect Conjecture, which states “if a graph has the P,-structure of a perfect graph
then it is perfect”. P, denotes a 3-path, i.e., an elementary path of length three. A graph G has the P,-
structure of a graph H if there is a bijection f between the set of vertices of G and the vertices of H such
that a set Sof four verticesin G inducesthe P, in G iff f(S) inducesa P, in H.

Since the complement of a 3-path is a 3-path again, the P,-structure of a graph and its complement are
isomorphic. Accordingly SSPGC implies WPGC. Chvétal [2] gave a rough proof for a theorem which
states that the only graphs having the P,-structure of an odd cycle of length at least five are the cycle itself
and its complement, and showed SPGC implies SSPGC applying the theorem. This conjecture was proved
by Reed [20] in 1987 and now called the Semi-Strong Perfect Graph Theorem.

Hougardy [11] showed that the Semi-Strong Perfect Theorem is rather weak for some graph classes to
certify the perfection and asked “whether one can replace the P, in this theorem by some other graph”. He
answered to it by himself, “It is easily seen that the only possible candidates for such a result are the P,
and its complement”. We agree to this. Our delta graph isakind of representation of P,-structure.

Wing is the one more approach to use P,-structures. An edge in agraphGiscalled awing if it is one of the
two non-incident edges of aninduced P, in G. For agraph G: its wing-graph W(G) is defined asthe graph
whose vertices are the wings of G and two verticesin W(G) are connected if the corresponding wingsin G
belong to the same P,. Hoang [10] has conjectured that a graph is perfect if its wing-graph is bipartite.
The graphs whose wing-graph is bipartite are called Hoang-graphs. Up to now his conjecture is still open.

Surely we have aready a plenty of conjectures. I'm afraid that we are merely increasing the number of the
unsolved. So we are going to solve our conjecture by ourselves, provided we can do it..Well, let us share
the problem. The following is our proposal to the readers. Be enjoyed!

C1: A4 strongly intransitive graph is minimally imperfect.
C2: A4 strongly intransitive graph is either an odd hole or an odd antihole.
C3: 4 graph is perfect iff it has no strongly intransitive graphs.

M.N. March 17, 2001



Definition

To solve the problem, we have to come out and go into three phases of graphs, undirected graphs, directed graphs and the
complement of the graphs. To distinguish those objects, we provide the naming of ...digraph for directed graphs and anti... for the
complements. Our definition for paths and cycles follows C.L. Liu [15]. Every subgraph in this article is a vertex induced

subgraph unless mentioned explicitly. We say a graph G has a graph H. This implicitly represents that H is a vertex induced
subgraph of G.

A path isan alternating sequence of vertices and edges incident with each other which begins and ends at
vertices. We say a path is elementary if no vertex occurs more than once in the sequence. Aswell apathis
simple if no edge occurs more than once in it. An anti-path in agraph G isa path in the complement of G.
A k-path isan elementary path of length (i.e., the number of edges) k. ~G denotes the complement of G.

o——e |-path
._/IJ_. ._@_. .—@—1 e——e——e 2-path
e—e——e¢——e 3path

an elementary path a 51mp1e path a path

3 -anti-path
(1,2,3,4,5,6) (1,2,3,5,4,2,5,6) (1,2,3,5,4,2,3,5,6)

A graph G is connected iff there isa path connecting a pair of vertices for all vertex pair in G. A graph G
of size > 2 iscalled 2-connected iff there are at least two distinct elementary paths connecting each pair of
vertices. A graph G is anti-connected iff the complement of G isconnected. N(v) denotes a subgraph of G

induced by all the neighbors of the vertex v. Accordingly ~N(V) is the subgraph of ~G induced by all the
neighborsof vin G.

AJ\A@@%

disconnected connected 2-connected N(p) ~N(p)

A cycle isa closed path such that the initial vertex coincides with the end vertex. A multigraph isa graph
allowed to have more than one edges joining the same two vertices. A simple graph has no such multi-
edges. A loop is an edge joining a vertex to itself. We assume that any vertex in either asimple graph or a
multi-graph has no loops except in the case when we consider OZ-cycles in a simple graph. A vertex
induced subgraph H of size > 3 of a graph G which is an elementary cycle having no chords is called a
hole. An antihole of G isahole in the complement of G.

. o e y
P\ & o .
a simple cycle  a simple graph multi-edges a loop a hole an antihole

An induced subgraph Z of a graph G is a Zigzag path iff it has a spanning path P,(p,,p,,....p,), and anti-
paths aP,(p,,p,....), @P,(p,,p,....) such as the alternate vertex sequences of P, V(P,) = V(aP)) O V(aP,). An
induced subgraph T of a graph G is a twisted path iff it has a spanning path P,(p,.p,,.--,.p,) and paths
P.(PysPss---), Po(PysPs,---) SUch asthe alternate vertex sequences of P, V(P,) = V(P,) O V(P,). A twisted path
T is strongly twisted iff every sub-path in T is twisted. Note: “spanning path” not necessarily implies



“elementary” here.

% a zigzag path
XS > 2NN
% a twisted path a strongly twisted path (image)

Aninduced subgraph Z of agraph Gisan OZ-cycle Z(Z,,Z) if Zisaclosed odd zigzag path in G, where Z
has a spanning cycle Z(p,,p,;---:P,,), M> 1 and a spanning anti-cycle Z,(p,,p,,---,P,,) Of the alternate vertex
sequence of Z,. We call the spanning cycle Z, / Z, the front-cycle / rear-cycle of Z respectively. The rear-
cycle Z, isallowed to pass through loops. We sometimes call the front-cycle Z, itself an OZ-cycle.

an OZ-cycle

A subgraph of agraph G induced by V, O {p} isafan F(p,V, on G, where pisavertex of G, V, O V(N(p))
and the subgraph induced by V, is anti-connected in N(p). The vertex p is called the fan’s pivot. A fan
graph F, isaderived graph from G such that a vertex of F_isafan f(p,aC), where p isa vertex of G and aC
is the vertex set of a connected component of ~N(p), and two vertices f,(p,,aC,) and f,(p,,aC,) of F, are
joined iff p, 0 aC, and p, O aC,.

1 1

w»
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W
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5,{2,3} 2,{4,5}

441} 3.{13
4.{2.3} 3,{4.5}

G fans (1,{2,3}), (1,{4,5}) the fan graph of G

4 3 4 3

A delta in graph G is a 2-path (a,b,c) in G. If an anti-path connects a with ¢ in N(b), the delta (a,b,c) isa
fan f(b,{a,c}) and we call the fan f itself a pivot on G. The middle vertex b is called the pivot-vertex. A
path P of G isa pivot-path / core-path in G if every deltain P isapivot / non-pivot respectively. Note: for
atriangle (a,b,c): there are three distinct deltas. A delta (a,b,c) coincides with the delta (c,b,a).

A pivot-cycle Pv(C,,C)) is a subgraph of G induced by V(C,), where V(C,) O V(C)), V(C,) forms a closed
odd pivot-path C,(p,,p.,---,P,), M= 1in G, and V(C,) forms an anti-cycle C, in G such that for each vertex
p, in C;: there is an anti-path aP, connecting p.,, p,, in N(p), operations +- mod 2m+1, i.e, C, =
(aP,aP,,...,aP,aP,,....aP, ). We have an asteroid Ar(C,,C,) which is a subgraph of ~G induced by the
vertex set V(Pv) and corresponds to a pivot-cycle Pv(C,,C)) in G. Hence “G has a pivot-cycle” is exactly
equivalent to “~G hasan asteroid” .



We call the odd cycle C, of a pivot-cycle Pv(C,,C,) the front-
cycle of Pv and the anti-cycle C, the rear-cycle of Pv. Similarly
an asteroid Ar(C,,C,) hasits front-cycle C, and odd rear-cycle C,.
A rear-cycle always implies an anti-cycle. We may call a vertex
in the front-cycle C, of a pivot-cycle a pivot and the odd cycle C,
itself a pivot-cycle. Similarly we may call the front-cycle C, of an
asteroid Ar itself an asteroid. So it can be considered that there
are just two cycles of the pivot-cycle C, and asteroid C,.

We call a pivot-cycle (C,,C)) / asteroid (C,,C,) a k-pivot-cycle /
k-asteroid respectively, where |C | = k, kisodd. Similarly we call
an OZ-cycle (2,,2,) ak-OZ-cycle such that |Z| = |Z,| = k, k is odd. anti-net pivotcycle oo
An induced subgraph of a graph G such as a k-OZ-cycle / k- asteroid ——=o
pivot-cycle / k-asteroid is spanning if k eguals the size of G.

Note: There is no 3-OZ-cycle, i.e.,, OZ-triangle. We say a pivot-cycle / asteroid is elementary / smple
according as the cycle C, is elementary / simple respectively. As well an OZ-cycle is elementary / simple
according asthe cycle Z, is elementary / simple respectively.

a pivot-cycle

The delta graph G, of a graph G is a derived graph from G such that a vertex p of G, isa delta (i.e., a 2-
path) of G. A vertex pair (p,,p,) in G, is joined iff p, and p, have a common edge in G and the edges of
deltap,, p, form a 3-path in G. We call avertex / edge of the delta graph G, a point / line respectively. We
make a point set partition [] of G, such that for al vertices x in G: every point p which has the middle
vertex x isin the same point subset [7(X).

We call an element in [] a pointset and [] the pointset partition
Slsévrgtp%‘:gt“ of delta graph G,. A point of G, correspondsto adeltain G and a
pointset of []in G, correspondsto avertex in G.

@—@pivot-line

A point p of the delta graph G, of G is a pivot-paint if p isa
pivot in G, otherwise a core-point. Accordingly the delta graph
G, can be partitioned into two parts. We call the subgraph M, /
pointset ~ M_ induced by all of pivot-points / core-points of G, the pivot-
map / core-map respectively. Lines in a pivot-map / core-map
are called pivot-lines/ core-lines. We make a directed graph D,
called the pivot digraph which contains al the points of the
a delta graph delta graph G,, all the pivot-lines (i.e., edges of pivot-map M,)
and lines connecting the pivot-map M, with the core-map M..




A directed path P is alternating if every two edges adjacent on P have an opposite orientation to each
other. A directed path P islinear if every edge on P has the same orientation.

aband bcarein D, an edgeacisin D for al vertex triple (a,b,c) of D. A directed graph
D is trangtively complete iff D is acyclic and has the transitivity property. The
definition isvalid for a case where D isa directed multigraph. Hiaeere oo

(linear contradiction)

We call aproperty of adirected graph D transitivity such that whenever directed edges i

is (Dacyclic triple, or (2)a linear triple (i.e., forms a linear 2-path, lacking the third
edge). Besides we call the state of (1) circular contradiction and (2) linear eyclic triple
Contradiction on D. (circular contradiction)

We say avertex triple T(a,b,c) of adirected graph D isin triple contradiction when T i' L_\

Edgese, e, of adirected graph D are coherent for a vertex vin D iff both of e, and e, are either incoming
edges or outgoing edges of v. A directed multigraph D, is coherent iff for each vertex pair in D, al edges
joining the two vertices have the same orientation.

An orientation of an undirected graph G is a directed graph D obtained by giving an orientation to every
edges of G. We call the orientation D of an undirected graph G a plotnikov digraph of G. A plotnikov
digraph D is complete iff D is transitively complete. An undirected graph G is transitive iff it has a
complete plotnikov digraph. Transitive graphs are also called comparability graphs [6] or transitively
orientable graphs[9].

0+«—0—0+«—0—0 o
an alternating directed path £<O @

O O O O O

a linear directed path coherent edges for p coherent multi-edges

coherent for independent
set partition I

A directed graph D has an independent set partition [] (like undirected graphs). If for all independent set
pair (P,Q), P,Q O [7]: for al vertex pair (p,q), p O P, g O Q: each edges pq has the same orientation like
P - Q, we say edges of D are coherent for [].

Suppose an undirected graph G,, an independent set partition [] of G, and its plotnikov digraph D,. We
have areduced graph G, from G, such that a vertex of G, isan element of [] and an edge of G, is reduced
multi-edges of an independent set pair of []. We call G, a meta-graph of G, and a plotnikov digraph D, of
G, a meta-plotnikov digraph of G,. We will call this graph operation []-reduction.

When a plotnikov digraph D, of G, is
coherent for the independent set

Graph I1-Reduction |

partition /7 of G, and the orientation of (Extension-Graph) Meta-Graph
the meta-plotnikov digraph D, of G,

. . Orientation Orientation
corresponds to the orientation of the

elements of [], we say the plotnikov Plotnikov Digraph -Reduction
digraph D, is coherent with the meta- (Extension-Digraph)
plotnikov digraph D..

P Meta-plotnikov Digraph




On the contrary, a graph G, is called an extension-graph of a graph G, when G, is a meta-graph of G,. A
plotnikov digraph D, of G, is called an extension-digraph of G,. If the extension-digraph D, is coherent
with the independent set partition [] of G,, we say that the extension-digraph D, is coherent. The delta
graph G, of a graph G is an extension-graph of G and a plotnikov digraph D, of a delta graph G, is an
extension-digraph of G.

A trangitive graph G, obtained from an intransitive graph G, by adding edges of an edge set a is called a
supplement graph of G,, and the edge set a (an edge subset of the complement of G)) is called the
supplement edge set. We say supplement edge set a isminimal iff G, becomes intransitive by eliminating
any edge of a.

A graph G is said to be contradictious iff G and the complement are elementary OZ-cycles and have no
smaller OZ-cycles. Anintransitive graph G isminimally intransitive iff G becomes transitive by removing
any vertex of G. We say a graph G is strongly intransitive iff both G and the complement of G are
minimally intransitive and have a spanning pivot-cycle.

A graph G is perfect iff the maximum clique size equals the chromatic number for all induced subgraphs
of G. With respect to an arbitrary graph, maximum clique size = necessary minimum coloring number
< chromatic number = minimum independent set partition number. An imperfect graph is minimally
imperfect iff it becomes perfect by removing any vertex of it. A graph G is berge iff G and the
complement of G have neither odd holes nor odd antiholes.

Berge’s Conjecture: A graph G is perfect iff G is a berge graph .



Theorems

T1: [Perfect Graph Theorem] The complement of a perfect graph is perfect.

T2: Aninduced subgraph of a perfect graph is perfect.

T3: A perfect graph and its complement have no odd holes.

T4: When a graph G and its complement have no odd holes, any induced subgraph of G and its
complement have no odd holes.

T5: (Removed.)

T6: A vertex induced subgraph of a transitively complete directed graph is transitively compl ete.

T7: Aninduced subgraph of a transitive graph is transitive.

T8: A chain of a complete plotnikov digraph D of a transitive graph G is a clique of G and an anti-chain
of D isan independent set of G.

T9: [Dilworth's Theorem] The maximum anti-chain size of a partially ordered set P equals the minimum
chain partition number and the longest chain length equal s the minimum anti-chain partition rumber.

T10: Atransitive graphis perfect. (The converseis not true.)

T11: [Triple Contradiction Theorem] A directed graph D is transitively complete iff every vertex triple of
D isnotintriple contradiction.

T12: A plotnikov digraph D is complete iff D hasthe transitivity property.

T13: When an OZ-cycle O, and its complement have no odd holes, there exists at least such one short
chord (i.e., an edge joining endpoints of a 2-path on the cycle) of O, that adding the edge to O, makes
an even hole including the edge. (Disproved by Stertenbrink.)

T14: [Algorithm A] A graph G istransitive iff G has no pivot-cycles. (A complete orientation algorithm
for transitive graphs)

T15: [Algorithm B] A complete supplemental plotnikov digraph of an arbitrary graph with minimal
supplement edge set can be obtained in polynomial time. #*

T16: [Algorithm C] If a graph G, and its complement has no odd holes, there exists a supplement graph
G, of G, satisfying the inequality: maximum clique size of G, < maximumclique size of G,. *

T17. [Berge's Conjecture] A graph isperfect iff it isa berge graph.

T18: Odd holes and odd antiholes are contradictious graphs.

T19: [Algorithm P] A transitive graph G, has always a complete plotnikov digraph D, coherent with the
meta-plotnikov digraph D, of G,. (A coloring algorithm for transitive graphs)

T20: Anarbitrary antihole of size> 4 isintransitive.

T21: Whenever agraph G has an OZ-cycle, G has a pivot-cycle.

T22: Agraph Gisintransitiveif G hasa pivot-cycle.

T23: Agraph Gisstrongly intransitive if G isa contradictious graph.

T24: Odd holes and odd antiholes arestrongly intransitive graphs .

T25: The following statements are equivalent for anundirected graph G.

()G istransitive.

(2)G has no OZ-cycles.

(3)G has no pivot-cycles.

(4)G has no elementary pivot-cycles.

(5)~G hasno asteroid.

(6) The pivot-map of the delta graph of G is bipartite.

T26: A drongly intransitive graph isimperfect. #

T27: Adrongly intransitive graph isa minimally imperfect graph.

T28: The maximum clique size and the chromatic number of a graph which has no strongly intransitive
graphs are coincident. %
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T29: A graph which has no strongly intransitive graphsis perfect.

T30: Astrongly intransitive graph is either an odd hole or an odd antihole. #*

T31: Agraphisstrongly intransitiveiff it isa contradictious graph. *

T32: Agraphisperfect iff it hasno srongly intransitive graphs.

T100-T125: (10 Theorems were here. They are al valid and have proofs but removed except T104, T123,
T124, T125. Those are renumbered as T19, T20, T21, T22 respectively.)

T130: Agraphisbipartiteiff all its elementary cyclesare even.

T131: Agraphis2-colorableiff it has no odd elementary cycles.

T132: A bipartite graphistransitive.

T133: Thereisno common point in any triangles in the delta graph G, of a graph G. (A delta graph has no
other cliguesthan triangles.)

T134: The pointset partition [] of the delta graph G, of a graph G is an independent set partition of G,.

T135-T136: (Removed.)

T137: Agraph Giseulerianiff the edge set of G can be partitioned into elementary cycles.

T138: A graph G has no pivot-cycles iff the pivot-map of the delta graph of G has no odd elementary
cycles.

T139: The coupled edges of a pivot are coherent for its pivot-vertex.

T140: Given a 2-connected graph G, the delta graph G, of G. An elementary path of length > 2in G
corresponds to an elementary path in G, and an elementary path in G, correspondsto a path in G.

T141: Agraph G hasan odd cycleiff G hasan odd elementary cycle.

T142: If a 2-connected graph G has a complete and coherent extension-digraph, then G istransitive.

T143: Agraph G hasan odd simple cycleiff G has an odd elementary cycle.

T144: The following three statements are equivalent for agraph G.

(2)G has an odd elementary cycle.
(2)G hasan odd simple cycle.
(3)G hasan odd cycle.

T145: Given a 2-connected graph G, the ddta graph G, of G, the pointset partition [] of G,. A vertex of G
one to one corresponds to a pointset in [] and one to many corresponds to pointsin G,. An edgein G
one to many correspondsto linesin G,.

T146: Given agraph G, the delta graph G, of G, the pointset partition [] of G,. Suppose points p,,p, L P,
0,0, JQ, PQ J[]. Whenever there exist lines p,q,, p,q, in G,, thelinesp,q,, p,q, existin G,.

T147: Given a graph G, the delta graph G, of G, the pointset partition [] of G,, the pivot-map M (core-
map M) of G,. A connected component C, of M_(M,) correspondsto a set Sof the pointset pairs of []
and no other components than C, have pivot-lines(core-lines) belonging to a pointset pair [JS.

T148: A subgraph of a graph G induced by the vertices of a core-path in G isatwisted pathin G .

T149: A core-line of the delta graph G, of size> 2 of a graph G has corresponding trianglesin G.

T150: Avertex pair (p,q) in astrongly twisted path T_ isalwaysjoined.

T151: (Removed.)

T152: A path in the core-map of the delta graph of a graph G correspondsto a twisted pathin G .

T160: A graph G hasa pivot-cycleiff G has an OZ-cycle.

T161: A graph G hasa pivot-cycleiff G has an elementary pivot-cycle.

T170: For every berge graph G,, there exists a perfect graph G, obtained by adding edges to G, satisfying
the following inequality: maximum clique size of G, < maximumclique size of G,. *

T171: Every vertex induced subgraph of a berge graph isa berge graph.

T172: A perfect graphisa berge graph.
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Proofs

T1: [Perfect Graph Theorem]
The complement of a perfect graph is perfect.

Proof: See Lovasz, 1972 [16]. O
T2: Aninduced subgraph of a perfect graph is perfect.

Proof: By definition if a graph G is perfect, the maximum clique size equal s the chromatic number for all
induced subgraphs of G. Let G, be an induced subgraph of G. Since a subgraph of G, is a subgraph of G,
for al subgraphs of G: the maximum clique size eguals the chromatic number. Hence every induced
subgraph of a perfect graph G is perfect. O

T3: A perfect graph and its complement have no odd holes.

Proof: An odd elementary cycle C, is not perfect because, the maximum clique size of C, is 2 and its
chromatic number is 3, hence an odd elementary cycle isimperfect. Assume a perfect graph G hasan odd
elementary cycle C.. By T2, C, comesto be perfect. This is a contradiction. Hence a perfect graph has no

odd holes. Assume that the complement aG of a perfect graph G has an odd hole. By T1, the complement

aG of aperfect graph G is perfect. Then it turns that perfect graph aG has an odd hole. This contradicts the
above. Hence the complement of a perfect graph also has not an odd hole, i.e., a perfect graph and its
complement have no odd holes O

T4: When a graph G and its complement have no odd holes, any induced subgraph of G and its
complement have no odd holes.

Proof: We prove the contraposition of the theorem, i.e., when a subgraph G, of G or its complement aG,
have an odd hole, the graph G or its complement aG have an odd hole. It is obvious that when G has an
odd hole, G has an odd hole. Aswell, when aG_ has an odd hole, aG has an odd hole. O

T6: A vertex induced subgraph of a transitively complete directed graph is transitively complete.

Proof: By definition, a transitively complete directed graph D isacyclic and whenever edges ab, bc are in
D, an edge ac isin D for all vertex triple (a,b,c). Since D has no cycles, a subgraph D, of D also has no
cycles, hence D is acyclic. Moreover for al triples of the induced subgraph D_: transitive triple relations
are dwaysvalid. Therefore every induced subgraph of atransitively complete directed graph is transitively
complete. O

T7: Aninduced subgraph of a transitive graph is transitive.

Proof: Immediate from T6. O

T8: A chain of a complete plotnikov digraph D of a transitive graph G isa clique of G and an anti-chain of
D isanindependent set of G.

Proof: A chain C, is a linear elementary path (p,.p,,...p,) of a directed graph D. As D is complete,

12



whenever edges pp, ., P..P, exist, an edge p,p, existsin D. Accordingly aswe have edges p,p, and p,p,, we
also have edges p,p,,---, PoP..» PP, That is, when thereis an oriented path (p,,p,,..,p,) in D, there isan edge
connecting the end vertices p, and p, in D. Hence for all vertex pair (p,q) in C,: there is an oriented path
(p,q) or (g,p) isin D and the edge pq or gp isin D. Consequently a subgraph of G induced by the vertices
of C, isaclique of G. An anti-chain aC, is a vertex set of D with no edges connecting the verticesin aC..
Therefore asubgraph induced by aC, isan independent set of G. O

T9: [Dilworth's Theorem]
The maximum anti-chain size of a partially ordered set P equals the minimum chain partition number and
the longest chain length equal s the minimum anti-chain partition numker.

Proof: See Mirsky, 1971 [18], Liu, 1985 [15]. O
T10: Atransitive graph is perfect. (The converse is not true.)

Proof: By T7, every induced subgraph of a transitive graph is transitive. Then we only need that the
maximum clique size equals the chromatic number for a transitive graph. Let D be a complete plotnikov
digraph of a trangitive graph G. By T9, the longest chain length of D equals the minimum anti-chain
partition number. By T8 a chain of D is aclique of G and an anti-chain of D is an independent set of G,
hence the maximum clique size of G equals the minimum independent set partition number. Thus a
trangitive graph is perfect. O

T11: [Triple Contradiction Theorem]
A directed graph D is transitively completeiff every vertex triple of D is not in triple contradiction.

Proof: By definition, a transitively complete directed graph D isacyclic and whenever edges ab, bc are in
D, anedge acisin D for al vertex triple (a,b,c). Since D is acyclic, cyclic triples are not in D. Assume a
linear triple (a,b,c) isin D, i.e., there are edges ab, bc but ac is not. This contradicts the transitivity of D.
Hence transitively complete directed graph has no triple contradiction. Assume there is no triple
contradiction for all triples in D and D has an oriented cycle C(p,,p,...p). Since there is no linear
contradiction, when edges p,p,, p,p,..., PP, exist, edgesp,p.,.., PP, PP, Must exist. Therefore it turns that a
cyclic triple (p,,p,,p,) exists. Contradiction. Hence if no triple contradiction on D, then D is acyclic. The
condition that linear contradiction does not exist satisfies the transitivity of D because it implies the status
whenever edges ab, bc exist, an edge ac exists. Accordingly the assertion that every vertex triple of D is
not in triple contradiction is the necessary and sufficient condition for D istransitively complete. [

T12: A plotnikov digraph D is complete iff D hasthe transitivity property.

Proof: By definition a complete plotnikov digraph D has the transitivity property. To prove the converse, it
is enough to show that if D has the transitivity property, then D is acyclic. Since plotnikov digraph is an
orientation of an undirected graph, there are neither loops nor parallel-edges. Assume D has an oriented
cycle C(p,.p,,---,P,)- By hypothesis, whenever directed edges ab and bc are in D, an edge acisin D. Hence
there are edges p,p,, PP ---» PP, While the edge p,p, exists in the cycle C. As the edges p,p,, and p,p, are
parallel-edges, it contradicts the definition of plotnikov digraph. Consequently D has no oriented cycles,
and then D isacyclic and complete. O

T13: When an OZ-cycle O, and its complement have no odd holes, there exists at least such one short
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chord (i.e., an edge joining endpoints of a 2-path on the cycle) of O, that adding the edge to O, makes an
even hole including the edge. (Disproved by Stertenbrink.)

Counter Example: 9 vertices, 17 edges
(1,2),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6),(6,7),(6,9),(7,8),(8,9)

T14: [Algorithm A] A graph G is transitive iff G has no pivot-cycles. (A complete orientation algorithm
for trangitive graphs)

Proof: By T22, a graph G with a pivot-cycle is intransitive. Then we prove the converse that a graph G
with no pivot-cycle is transitive. T142 says that if a graph G has a complete and coherent extension-
digraph, then G istransitive. So if the delta graph G, of G with no pivot-cyclesis transitive and if we could
get a complete and coherent plotnikov digraph of G,, we have done. However thisisimpossible from T130
which says that there is no common point in any triangles in the delta graph G,. This means that almost
every triangle in G, forms so called anet. A net is agraph which consists of atriangle (a,b,c) and edges ax,
by, cz It is easily ascertained that a net is intransitive. To avoid such a bad configuration, we omit all of
core-linesin G, and make a complete pivot digraph D, first.

A pivot digraph is a digraph contains al of pivot-lines and the lines connecting the pivot-map with the
core-map. After we complete the orientation of the pivot digraph D, we make up the orientation for the
core-map M_ in the last stage and get a complete plotnikov digraph P, of G. By T137, dl the linesin the
core-map correspond to triangles. That is, there isno linear triplesrelated to the core-map. So by T11, the
only congraint condition of the orientation for the core-map is just to avoid circulation and it is easily
done. We show that if the pivot-map of the delta graph G, has no odd elementary cycles, a complete
plotnikov digraph P, of G is to be constructed by the following algorithm. Without loss of generality, we
assume G is 2-connected and the size of G isgreater than five.

[Algorithm A]

(1)Given agraph G(V,E). [V|=n, [E|=m.
(2)Make the delta graph G, of G, the pointset partition [] of G,, the pivot-map M,, the core-map M..
(3)Make apivot digraph D (V_,E), V, = V(G), E, = E(G)) - E(M,).
(4)Get the connected components Cp of the subgraph induced by V(M,) in D,.
(5)Pick an arbitrary component C, [ Cp.
Get a2-coloring of C,. If C_ isnot 2-colorable end.
(6)Find a predetermined line e in C, and decide the color orientation.
For all lines of the component C: [Set Orientation] of each line by the color orientation.
(7)For al undetermined lines pq connecting C, with the core-map M, pin C, qin M.
If there is a predetermined line e in D, incident with p, let the orientation of e be O,
else an arbitrary orientation be O.
[Set Orientation] of the line pqg by the orientation O.
(8)Continue (5) until connected components Cp becomes empty.
(9)Make a directed graph P,(V,E).
Copy the pointset pair orientation of [7in D, to P,.
Make the partial order set O, from P,.
(9)Transform the partial order O, to atotal order O,
For all undetermined edges e in P,: Set the orientation according to the total order O..
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(10) P, isacomplete plotnikov digraph of G.

[Set Orientation]
(1)Givenaline pq in the pivot digraph D,, aline orientation O,.
(2)Set the orientation O, totheline pqin D,
(3)For al undetermined lines e of the same pointset pair of the edge pq:
Set the orientation O, to the line e.
(4)Let P,Q,Rbepointsetsof [],pOP,q0Q, P,QRO[].
For al pointset triangles (P, Q, R) including the line pq:
If the pointset pair orientation (Q,R) / (P,R) is determined and the 2-path (P,Q,R) / (R,P,Q) islinear,
and the pointset pair orientation (P,R) / (Q,R) is undetermined, decide the orientation O_ avoiding
circular-contradiction, and for all undetermined lines e of the pointset pair (P,R) / (Q,R):
set the orientation O, to the line e.

First we construct the delta graph G, of G, the pointset partition [] of G,, the pivot-map M,, and the core-
map M.. The time complexity of step (2) is polynomial for the points number of G, = the number of the
edge pairs in G < m(n-2) = n(n-1)(n-2) / 2, i.e,, a most O(n’). Step (3), we make the pivot digraph D,
having all the points of G,. D, contains all of lines of the pivot-map M, and all of lines connecting the
pivot-map M, with the core-map M. At step (4) we divide the pivot-map M, into the connected
components Cp in D,. Step (5) pick an arbitrary connected component C, [0 Cp and get the 2-coloring of
C,. If C, isnot 2-colorable, M, is not 2-colorable, and by T131 M, has an odd elementary cycle and by
T138, T22, G is intrangitive. We can get a 2-coloring of an arbitrary 2-colorable graph by a simple
breadth-first-search method. Step (6) set the orientation of lines in the component C, according to the end
points color(0) / (1). Since al lines of each pointset pair must be coherent, we set the orientation of all
lines of each pointset pair in abundle by the orientation of the first determined line.

Accordingly it is probable that some linesin C, are predetermined at some preceding stage. Therefore first
we seek a predetermined line in the component C,. If a predetermined line p,- g, exists, we decide the
color orientation like color(p,) - color(q,), else we use the default orientation color(0) - color(1). It is
probable that two points in C, have different colors and contained in a same pointset. This is a
contradiction but we show it does not happen. Assume points p, / g, in C, have color(0) / (1) respectively
and p,, g, are in the same pointset. As C, is connected, there is an odd elementary path P(p,,p,,.-,P,,,0,)
connecting p, with g, and there must be an line g,q, doubled over the line p,p,. There are two topol ogical
cases, (1) P = (0P,r-PonsClnCl): (2) P = 0Py PG Since the point pair (p,,) / (p,,q,) are in a same
pointset of [ respectively and there are lines pp,, q,0, in D,, by T146, we have lines p,g,, p,q, in D,. For
the first case, the path (q,,p,.--,p,,) IS closed and forms an odd elementary cycle. As well for the second
case, the path (p,,..,P,.,,0,:0,) IS closed and forms an odd elementary cycle. These contradict the
hypothesis.

The function [Set Orientation] sets the orientation of an undetermined line pg. All of the lines of the
pointset pair, which contains the line pq, are set by the same orientation in a bundle. If the line pgisin a
pointset triangle (P,Q,R) and the orientation of the coupled pointset pairs forms alinear 2-path, we give a
forced orientation to the third pointset pair to avoid the circulation. Note: SinceC, has no odd cycles, there
is no triangle in C,. Further from T133 we know that any two triangles in the delta graph G, have no
common lines, and from T147 that a connected component C, dominates the orientation of a pointset par.
Accordingly we do not call [set orientation] recursively.
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Step (7) set the orientation of lines connecting the component C of the pivot-map M, with the core-map
M.. Since every point p(x,y,2) in M, is a pivot-point, by T139, lines incident with p must be coherent. If
there is a line e incident with p and predetermined in D,, then the orientation of e is applied to the other
linesincident with p. If there isno predetermined line, an arbitrary orientation is given to the first line. At
step (8) we complete the orientation of D, where the lines of D, are coherent with the pointset partition /7.
Step (9) We reduce the pivot digraph D, to a directed graph P,.

All of pointsin a pointset of D, is contracted to a vertex of P, and all of linesin a pointset pair in [] is
reduced to an edge of P,. P, has the same number of vertices / edges of G. The determined line
orientations of D, are all bundled (i.e., coherent) with each pointset pair orientation. So we can copy the
pointset pair orientationsto P,. We consider the partial order set O, which consists of all of verticesand all
of determined edgesin P,. We can transform the partial order O, to atotal order O, using some topological
sorting method. (See Knuth, 1994 [12].) The only constraint condition for the orientation is being acyclic.
And it is to be fulfilled by deciding the orientation according to the total order O, i.e, just give an
orientation to each undetermined edge pq likeif p < g inthetotal order O, then p—qgelseg-p.

We decide every linesin the pivot digraph D, just once. Accordingly the total complexity of algorithmA is
proportional to the number of linesin D,, i.e, at most O(Cn%), where C is the orientation cost per line.
Costs for making connected components, 2-coloring, topological sorting are polynomial-time respectively.
Thusif the pivot-map M, of G, has no odd elementary cycles, we can obtain a complete plotnikov digraph
P, of G by algorithm A in polynomial time. Hence if the pivot-map M, of the delta graph G, has no odd
elementary cycles, G istransitive. Consequently by T138, a graph with no pivot-cyclesistranstive. Above
all, the statement holds. O

T15% [Algorithm B] A complete supplemental plotnikov digraph of an arbitrary graph G with minimal
supplement edge set can be obtained in polynomial time.

Proof: Pending...

T16%* [Algorithm C] If a graph G, and its complement has no odd holes, there exists a supplement graph
G, of G, satisfying the inequality: maximum clique size of G, < maximum clique size of G,.

Proof: Pending...

T17: [Berge's Conjecture]
A graph isperfect iff it isa berge graph.

Proof 1. By T172 a perfect graph is a berge graph. Then we will prove that if a graph G and the
complement aG have no odd holes, G is perfect. When a graph G, and its complement aG, have no odd
holes, by T16 we have an supplement graph G, of G, such that,

maximum clique size of G, < maximum clique size of G,

As G, is obtained by adding edges to G,, the chromatic number of G, is always larger or equas the
chromatic number of G,. Hence,

maximum clique size of G,< chromatic number of G,
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chromatic number of G, < chromatic number of G,
Since G, istrangitive, G, is perfect by T10 and

maximum clique size of G, = chromatic number of G,.
Then al the equalities hold in the inequalities above. Hence,

maximum clique size of G, = chromatic number of G,
By T4, when a graph G and its complement have no odd holes, any induced subgraph of G and its
complement have no odd holes. Therefore these equalities hold for each subgraph G, of G, then if graph G
and the complement have no odd holes, G is perfect. By definition, a berge graph and the complement
have no odd holes, hence a berge graph is perfect. We have done. O
Proof 2: By T32, a graph is perfect iff it has no strongly intransitive graphs and by T30, a strongly
intransitive graph is either an odd hole or an odd antihole. Hence a graph is perfect iff it has neither odd
holes nor odd antiholes. Let us show that a graph which has neither odd holes nor odd antiholes is
equivalent to a berge graph. By definition a berge graph has neither odd holes nor odd antiholes. Consider
agraph G which has neither odd holes nor antiholes. Assume the complement aG of G has either an odd
hole H or an odd antihole aH. Then it turns that G has either an odd antihole ~H or an odd hole ~aH. This
contradicts the hypothesis. Hence a graph which has neither odd holes nor odd antiholesis a berge graph.

Therefore agraph G is perfect iff Gisa berge graph. O

Proof 3: By T172 a perfect graph is aberge graph. Then we prove that aberge graph is perfect. By T170, a
berge graph B, has a perfect supplement graph B, satisfying the inequalities below.

maximum cligue size of B, < maximum clique size of B, (1)

As B, is obtained by adding edges to B, the chromatic number of B, is always larger or eguals the
chromatic number of B,. Hence,

maximum clique size of B, < chromatic number of B, (2
chromatic number of B, < chromatic number of B, (3)

By hypothesis, B, is perfect. Hence by the definition of perfect graphs,
maximum clique size of B, = chromatic number of B, 4

Conseqguently, all the equalities hold in the inequalities (1)-(3). Hence,
maximum clique size of B, = chromatic number of B, (5)

By T171, when a graph G isa berge graph, every subgraph of G isa berge graph. Accordingly equality (5)
holdsfor all induced subgraphs of G and then G isa perfect graph. Hence the assertion holds. [

T18: Odd holes and odd antiholes are contradictious graphs.

17



Proof: By definition, an OZ-cycle Z must have the front-cycle Z, and the rear-cycle Z, of the alternate
vertex sequence of Z,. Obvioudly an odd cycle C,, |C | = 2m+1, m > 1isan elementary OZ-cycle for C, has
an elementary spanning cycle C (p,.p,.--,P,,) and a spanning anti-cycle C,(p,,p,--P.,) Of the aternate
vertex sequence of C,. Apparently the odd cycle C, has no more OZ-cycles.

For the complement aC, of the odd cycle C,, We have the other spanning cycles A, A,. Start at the vertex
p, on C, and connect mth vertices continuoudy, we obtain an elementary spanning anti-cycle
A (PPt Porns P Pormss -+ P Pre) - THis is the front-cycle A, of aC,. Actualy the alternate vertex sequence of
A, forms a spanning cycle A, (PP Poms--+P,) @nd A, exactly corresponds with C,. Thus A, is the rear-cycle
of aC, and the complement aC, of the odd cycle C, is an elementary OZ-cycle. The rear-cycle A, of aC,is
the odd cycle C, itself and there is no other candidate to be the rear-cycle of aC,, hence aC, can not have
any other smaller OZ-cycles than (A,,A,). Accordingly an odd cycle (except triangle) and its complement
are both elementary OZ-cycles and have no smaller OZ-cycles, then these are contradictious cycles.

T19: [Algorithm P] A transitive graph G, has always a complete plotnikov digraph D, coherent with the
meta-plotnikov digraph D, of G,. (A coloring algorithm for transitive graphs)

Proof: We call a vertex of a directed graph who has no incoming / outgoing edges a source / sink
respectively. As G, is transitive, we have a complete plotnikov digraph D, of G,. We will get a minimum
independent set partition [] of G, and make D, coherent with the meta-plotnikov digraph D, of G, by the
following algorithm.

[Algorithm P|
1. Given atrangitive graph G,, a complete plotnikov digraph D, of G,.
2.Copy D,toD.i=1
3. Move al of the sources of D into the vertex set P,. Increment i.
4. Continue (3) until D becomes empty.
5. Obtained set []={P} isaminimum independent set partition of G,.
Let G, be the meta-graph of G, reduced by [] and a plotnikov digraph of G, be D,.
6. Set the edge orientation of D, according to the index order of [7:
ifi<jthenP P foralij,1<ij<|f]l.
7. The plotnikov digraph D, is coherent with the meta-plotnikov digraph D,.

Since a complete plotnikov digraph D, is acyclic and by T6 an induced subgraph of D, is complete (then
acyclic), there are always some sources at step (2). Further |[]] = the longest chain length of D, because, as
we at first picked all sources of D, and repeated the step, the steps count exactly corresponds to the longest
chain length. As D, is complete, by T9 the longest chain length of D, equals its minimum anti-chain
partition number, and by T8 the minimum anti-chain partition of D, is identical with the minimum
independent set partition of G,. Therefore [] is the minimum independent set partition of G,. From the
description of step (6), it is observed that D, is coherent with D,. Thus we obtained a complete and
coherent plotnikov digraph D, with the meta-plotnikov digraph D, of G,. (The algorithm gives a minimum
independent set partition [7, i.e., acoloring algorithm of transitive graphs.) O

T20: An arbitrary antihole of size> 4 isintransitive.

Proof: A 5-antihole, i.e., ~C, = C, isintransitive. Then we assume that the size of an antihole aH is more
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than 5. Let the antihole of a hole H be aH(p,,p,,P.:P,P.--sP,)- Vertex pairs (p,,p,), (PuPR.):--» (B..P,) are not
joined in aH (they are the edges of H) and all other vertex pairs of aH are joined. Consider C,(p,,P,:P.,Py:P)
inaH. As edges p,p,, p,p., P,R., PP, are not in aH, deltas (p,,P..P,), (P,:P.P). (P,:PxPy), (P,P.P:) are pivots.
Asedges p,p., PsPs:--» P.P, are not in aH, the subgraph induced by {p,,p;,-...p,.p,} 1S anti-connected. Hence

F(p,{ P,:Ps:---»Po} ) is afan and the delta (p,,p,,p,) is a pivot. Consequently C.(p,,p,,P.:P.,P,) IS a pivot-cycle
and then by T22, Gisnot transitive. [J

T21: Whenever a graph G has an OZ-cycle, G has a pivot-cycle.

Proof: By definition, an OZ-cycle Z(Z,,Z,) has an odd front-cycle Z(p,,p,,--,P,,), M> 1 and arear-cycle
Z,(PyPos--1 Poy) OF the alternate vertex sequence of Z,. If the rear-cycle Z, does not contain an anti-loop, i.e.,
forali,0<i<2m p, #p.,, then there isalways an anti-edge p,,p.,, in Z,, and every 2-path (p_,,p,,p..,) isa
pivot. Hence the OZ-cycle Z isa pivot-cycle (Z,,Z,). Whenever thereisaloop pp in the rear-cycle Z, of Z,
there are parallel-edges pg and gp in the front-cycle Z,. In this case, we can remove the loop pp and one
occurrence of the vertex p from Z, and remove both edges of pg and gp from Z,. This operation doesn’t
change the parity of the front-cycle Z, and the rear-cycle Z, still remains as an anti-cycle. Thuswe can
always get a pivot-cycle Pv(C,,C,) from OZ-cycle Z(Z,,Z)) even if it hasloops, where

the length of C, = the length of Z - k,

the length of C, = the length of Z, - 2k = odd,

k = the number of loopsin the rear cycle Z,.
Hence if G has an OZ-cycle, G has always a pivot-cycle. [

T22: Agraph Gisintransitive if G has a pivot-cycle.

Proof: Assume that a graph G has a pivot-cycle C,. By definition every deltain C, is a pivot and then by
T139, every pair of adjacent edges on C, must be coherent in any complete plotnikov digraph. I.e., the
path on C, must be alternating. However it is impossible as the vertex number of the cycle C, is odd and
then alinear contradiction isinevitable on C. Hence by T11, Gisintransitive. O

T23: Agraph Gisstrongly intransitive if G is a contradictious graph.

Proof: By definition a contradictious graph G and the complement are elementary OZ-cycles and have no
smaller OZ-cycles. Then by T160, G and the complement of G have no smaller pivot-cycles, hence by T14,
those are minimally intransitive graphs. Since a contradictious graph is an elementary OZ-cycle and has
no smaller OZ-cycles, the OZ-cycles of both G and the complement are spanning and have no loops.

Therefor it is sure that G and the complement have spanning pivot-cycles corresponding to the OZ-cycles.

Hence a contradictious graph is strongly intransitive. [J

T24: Odd holes and odd antiholes arestrongly intransitive graphs.

Proof: By T18, odd holes and odd antiholes are contradictious graphs, then by T23 strongly intransitive.
O

T25: The following statements are equivalent for anundirected graph G.
(1) Gistransitive.

(2) G hasno OZ-cycles.

(3) G hasno pivot-cycles.
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(4) G hasno elementary pivot-cycles.
(5) ~G hasno asteroid.
(6) The pivot-map of the delta graph of G is bipartite.

Proof: By T14 (3) isequivalent to (1). (2) and (3) are equivalent by T160. By definition (5) isequivalent to
(3). By T138 and T130 (6) isequivalent to (3). By T161 (3) is equivalent to (4). O

T26% A strongly intransitive graph isimperfect.

Proof: Pending...

T27: A strongly intransitive graph isa minimally imperfect graph.

Proof: By T26 a strongly intransitive graph is imperfect. By definition, a strongly intransitive graph G is
minimally intransitive, then every proper induced subgraph of G is transitive. As a transitive graph is
perfect by T10, every proper subgraph of G is perfect. Hence strongly intransitive graph G is a minimally

imperfect graph. O

T28% The maximum clique size and the chromatic number of a graph which has no strongly intransitive
graphs are coincident.

Proof: Pending...

T29: A graph which has no strongly intransitive graphsis perfect.

Proof: Suppose a graph G which has no strongly intransitive graphs. It is obvious that every induced
subgraph G, of G has no strongly intransitive graphs because, if G, has a strongly intransitive graph G,, it
turnsthat G hasastrongly intransitive graph G,. This contradicts the hypothesis. Hence every subgraph G,
of G has no strongly intransitive graphs, then by T28 the maximum clique size and the chromatic number

are equal for all induced subgraphs of G. Accordingly G isperfect. O

T30%* A strongly intransitive graph is either an odd hole or an odd antihole.

Proof: Pending...

T31#* Agraphisstrongly intransitive iff it is a contradictious graph.

Proof: Pending...

T32: A graph isperfect iff it has no srongly intransitive graphs.

Proof: By T29, if agraph G has no strongly intransitive graphs, G is perfect. By T26 a strongly intransitive
graph is imperfect and from T2 a perfect graph has no imperfect subgraphs, hence a perfect graph G has

not a strongly intransitive graph. O

T130: A graphishipartiteiff all its elementary cyclesare even.
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Proof: See Konig, 1936 [14]. O
T131: Agraphis2-colorableiff it has no odd elementary cycles.

Proof: A graph G(V,E) is bipartite if V can be partitioned into two subsets V, and V, such that every edge
of G joins a vertex of V, with a vertex of V,. If a graph G is bipartite, we can give color(0) to V, and
color(1) to V,. Thisis a 2-coloring of G. As well it is self-evident that if a graph G is 2-colorable G is
bipartite. Hence bipartite is equivalent to 2-colorable. Since the right statements of T130 and T131 are
equivalent, “G has no odd elementary cycles’ isequivalent to “G is 2-colorable”. O

T132: A bipartite graph istransitive.

Proof: By T130, T131 a bipartite graph G has a 2-coloring. Let a plotnikov digraph of G be P,. Every edge
of G hasend vertices, one is painted color(0) and another color(1). We can set all the orientationsin P, as
color(0) — color(1). It is obvious that thereis neither acyclic triple nor alinear triplein P,. Hence by T11,
P, iscomplete and Gistransitive. O

T133: There is no common point in any triangles in the delta graph G, of a graph G. (A delta graph has no
other cliguesthan triangles.)

Proof: Consider a triangle T(a,b,c) of the delta graph G,, where a,b,c are points a(p,,p.,p.), b(p..P..p.),
c(p,,p.p,) of G, and p, is avertex in G. T forms an edge sequence p,p,, P,Ps PsPs P.Ps- AS T isatriangle,
this sequence must be closed. Therefore the edge p,p, must coincide with p,p,. I.e., p, = p, and p, = p, are
required. Hence T(a,b,c) consists of three points a(p,,p,,p.), b(P,,P..P.), c(PsP,.P,). Thus atriangle T(a,b,c)
of G, exactly corresponds to a triangle (p,,p,,p,) of G. Consequently there is no common point in any two
trianglesin the delta graph G, of G. O

T134: The pointset partition [] of the delta graph G, of a graph G is an independent set partition of G,.

Proof: By definition, apointin G, isa vertex of G, and the pointset partition [] isa vertex set partition of
G, such that every point P(s;t,u) in apointset [](t) has the same middle vertex t in G. Let arbitrary two
pointsin a pointset [](t) be Py(s,,t,U,), P,(s,t,u,). Assume that thereisaline PP, in G,. By definition,
points P,, P, must have acommon edgein G. Hence edge tu, = st. Thismeanst =5, u, = t and it turns to
P, = (s,t,t) and P, = (t,t,u,). Contradiction. Consequently every point pair (P,,P,) in a same pointset of []is
not joined. Therefore a pointset in [] isan independent set of G, and [] is an independent set partition of
G, O

T137: A graph Giseulerian iff the edge set of G can be partitioned into elementary cycles .
Proof: See Harary, 1969 [8]. O

T138: A graph G has no pivot-cycles iff the pivot-map of the delta graph of G has no odd elementary
cycles.

Proof: Let M, be the pivot-map of the deltagraph G, of G. Without loss of generality we assume that G is

2-connected. By T140, an elementary path P of length > 2 of G corresponds to an elementary path in G..
Accordingly apath in G corresponds to a path in G,. By definition, every point in M, is a pivot-point and
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every delta on a pivot-path in G has a corresponding point in M. Hence when G has a pivot-cycle, thereis
a corresponding odd cycle in M,. By T144, when M, has an odd cycle, M, has an odd elementary cycle.
Consequently if G has a pivot-cycle, the pivot-map M, has an odd elementary cycle. By T140, when M,
has an odd elementary cycle, there is an corresponding odd cycleC, in G. By definition every point pin M,
is a pivot-point and its corresponding delta is a pivot. Hence C, is a pivot-cycle of G. Consequently the
statement “a graph G has a pivot-cycle’ is equivalent to “the pivot-map M_ has an odd elementary cycle’.
O

T139: The coupled edges of a pivotare coherent for its pivot-vertex.

Proof: When a vertex triple (a,b,c) is a linear triple (i.e., edges ab, bc exist and ac does not), by T11
coupled edges ab and bc must be coherent for the middie vertex b in any complete plotnikov digraph.
Suppose a delta (q,r,s) in G is a pivot and r is the pivot-vertex. By definition, there is an anti-path
aP(g,a,,a,,..,8,,5), where vertices a,,a,,..,a, are the neighbors of r. As the edges on aP are not in G, the
deltas (q,r,a,), (&,r,a),.., (&,r,9) arelinear triples. Hence concerning above, edge pairs @r,ra,),(ar, ra,),...,
(ar,rs) must be coherent for the vertex r respectively in any complete plotnikov digraph. Therefore it is
immediate that the coupled edges gr, rs are coherent for the pivot-vertex r. [J

T140: Given a 2-connected graph G, the delta graph G, of G. An elementary path of length > 2 in G
correspondsto an elementary path in G, and an elementary path in G, correspondsto a path in G.

Proof: By T145 a vertex of G one to many corresponds to points in G,. Aswell an edge in G one to many
correspondsto linesin G,. Without loss of generality we assume the size of G isgreater than 5. Consider a
3-path P,(s;t,u,v) in G. If P, isclosed, by T133 atriangle (s;t,u) exactly correspondsto atriangle (ST,U) in
G,. Then suppose P, isopen. Four points r,s,t), T(st,u), U(t,u,v), V(u,v,w) arein G,, wherer,st,u,v,w are
verticesof G. That is, the 3-path P, uniquely corresponds to an 3-path (ST,U, V) in G, and al the pointsin
the path are distinct. As well an elementary path of length > 2 in G can be decomposed into a set of 3-
paths and all of points in those 3-paths are distinct in G,. Therefore an elementary path xy of G
corresponds to an elementary path XY of G,. Especialy if xy is closed, XY also is closed. It isimmediate
from T145 that an elementary path XY of G, isapath xy of G. Further if XY isclosed, xy alsoisclosed. O

T141: A graph G hasan odd cycle iff G has an odd elementary cycle.

Proof: If G has an odd elementary cycle C,, G has an odd cycle C.. Then assume G has an odd cycle C.. If

C, is elementary, we have an odd elementary cycle C,. If C, is simple, by T143 G has an odd elementary

cycle. In general case, the path of C, may include multi-edges, (i.e., multiple occurrence of the same edge).
We can get an odd simple cycle C_on C, by the following procedure.

(1) Givenan odd cycle C,. Let C_ be C.

(2) If C_issimple (i.e., with no multi-edges) end.

(3) Choice an arbitrary multi-edge ein C..

(4) Remove 2 occurrences of e from C_and get anew graph C,.

(5) If C, isconnected, C, isstill an odd cycle. let C, be C.. goto (2).

(6) If C, isseparated into K, and acycle C,, C, isstill an odd cycle. Let C, be C.. goto (2).

By definition, C, have at least three vertices. As the length of C, is finite, this procedure definitely halts
and we obtain an odd simple cycle C_. Then we can find an odd elementary cycle C_as above. O
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T142: If a 2-connected graph G has a complete and coherent extension-digraph, then G istransitive.

Proof: Let D, be the complete and coherent extension-digraph of G. By definition, we have an extension-
graph G, of G and an independent set partition [] for the []-reduction of G, to G. D, is a complete
plotnikov digraph of G, and the edges of D, are coherent with []. G, is of course transitive for its plotnikov
digraph D, is complete. We can construct a complete meta-plotnikov digraph D, of G,, with which the
extension-digraph D, is coherent by the following procedure.

(1)Given a graph G(V,E), a transitive extension-graph G,(V,,E,) of G, the independent set partition [] of G.,.
A complete plotnikov digraph D, of G, coherent with [7. [V| = |[].

(2)Make a directed multigraph D (V. ,E,) by contracting al vertices of D, in an element of [] to a vertex of
D,. V=17l [E| = E.l

(3)Get a directed graph D,(V,,E,) by merging every multi-edges of a vertex pair of D,, into an edge of D,.
VoI = 171= VI

(4)D, isacomplete plotnikov digraph of G.

First we contract the vertices of the digraph D, and get a multigraph D_. All of vertices in each
independent set of [] are reduced to a vertex in D,. This makes a multigraph having the same number of
edgesasG,, i.e, |[E,| = |E,|, V.| = |[]] = [V]. Since D, is complete by hypothesis, D, isacyclic and then D, is
also acyclic. Further as we do not eliminate any edges in D,, the transitivity of D, is preserved by the
multigraph D,. Next we reduce all edges in a vertex pair of the multigraph D, into an edge and get a
directed graph D,. By hypothesis edges of D, are coherent with the independent set partition [], and then
all multi-edges in a vertex pair of D, have the same orientation and are coherent with the corresponding
edge in D,. Obvioudly D, is acyclic and the transitivity of D_ is preserved by D,, then D, is transitively
complete. As G, isan extension-graph of G, and D, isthe plotnikov digraph of G,, D, is a complete meta-
plotnikov digraph of G,. Hence D, isacomplete plotnikov digraph of G and then G istransitive. O

T143: A graph G hasan odd simple cycleiff G has an odd elementary cycle.

Proof: If G has an odd elementary cycle C, G has an odd smple cycle C. Then assume G has an odd
simple cycle C. As C_isan eulerian graph, by T137 we get adistinct elementary cycles set Ce of C_. Since
C.isodd, the number of edgesis odd. Conseguently it isobvious that thereis at least one odd elementary
cycle C_ O Ce. Hence when G has an odd simple cycle, G has an odd elementary cycle. O

T144: The following three statements are equivalent for agraph G.

(2)G has an odd elementary cycle.

(2)G hasan odd simple cycle.

(3)G hasan odd cycle.

Proof: Immediate from T143, T141. O

T145: Given a 2-connected graph G, the ddta graph G, of G, the pointset partition [] of G,. A vertex of G
one to one corresponds to a pointset in [] and one to many corresponds to pointsin G,. An edge in G one

to many correspondsto linesin G,.

Proof: As G is 2-connected, every vertex y of G isincident with at least two edges xy and yz. Hence G, has
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at least one point p(x,y,2) and every vertex y of G has a corresponding pointset Y O [7, p O Y. Accordingly
avertex y in G one to one corresponds to a pointset Y O [] and one to many corresponds to pointsinG,. By
definition, when an edge xy isin G, there are lines p*g* in G, such as p* (u*,x,y) O X, g*(x,y,v*) O Y, X,Y
O []. Hence an edge in G one to many correspondsto linesin G,. O

T146: Given a graph G, the delta graph G, of G, the pointset partition [] of G,. Suppose points p,,p, L P,
0,0, JQ, PQ J[]. Whenever there exist lines p,q,, p,q, in G,, thelinesp,q,, p,q, existin G,.

Proof: Without loss of generality we assume that the size of G is greater than 5. As there are linesp,q,, p,d,,
by definition p, and g, have a common edge x.y, in G, as well p, and g, have a common edge x,y, in G.
Then it comes to be po(Wo-Xo-yo)- QD(Xo-yolzo)' pl(Wl'Xl'yl)' Q1(X1'y1121)' where WD'Wl'XD'Xl'yD'yl'ZD'Zl are vertices
in G. Moreover {p,, p.}, {d, 0,} arein the same pointset respectively, i.e.,, x, =X, andy, =y,. Hence it turns
to p, = (W, %,,Y,), 0 = (%,Y,,2)- Accordingly it is apparent that there are lines p,g, = (W,,%,,Y,,2) @nd p,d, =
(W, X0, YorZo) - O

T147: Given a graph G, the delta graph G, of G, the pointset partition [] of G,, the pivot-map M (core-
map M) of G,. A connected component C, of M (M,) correspondsto a set S of the pointset pairs of /7 and
no other components than C, have pivot-lines(core-lines) belonging to a pointset pair 7S,

Proof: Let Cp,,Cp, be two distinct components of M (M,). Assume there are lines p,g, in Cp, and p,q, in
Cp,, where p,,p, O P, q,,0, O Q, P,Q O []. Then by T146, we have lines p,q,, p,q, in G,. This contradicts
the hypothesis that Cp,, Cp, are disconnected. Hence all of pivot-lines(core-lines) in a pointset pair (P,Q)
is dominated by some particular component of M (M,). That is, a connected component C, of M (M)
corresponds to an unique pointset-pair set S = {(P,Q)} and other components than C, have no pivot-
lines(core-lines) in a pointset pair (P, Q) 0 S. O

T148: A subgraph of a graph G induced by the vertices of a core-path in G isatwisted pathin G .

Proof: By definition every delta d on a core-path P,(p,,p,,....p,) of G isnot a pivot, where p, is a vertex of
G and the delta d, isa 2-path (p_,,p.,p.,) in G. Sinced is not a pivot, the vertex pair (p._,,p.,,) must be joined
in G. Hence the subgraph T induced by the vertices of the core-path P, has a spanning path P,(p,.p,,---.P,)
and paths P,(p,,p,,---), P,(P.,Ps:---), then T isatwisted pathin G. O

T149: A core-line of the delta graph G, of size> 2 of a graph G has corresponding trianglesin G.

Proof: A core-line is an edge in a delta graph joining core-points (i.e., non-pivot-points). Suppose a core-
line pq in G,, where p(s,t,u), g(t,u,v) are core-points of G, and s;t,u,v are vertices in G. By definition we
have edges &, tu, uv in G and the core-line pg corresponds to the edge tu. Since the points p, q are non-
pivot-points, the vertex pairs (s,u), (t,v) must be joined in G respectively. That is, there are edges su and tv
in G. Hence we have triangles (s;t,u) and (t,u,v) in G. The edge tu isincluded in both triangles, hence the
core-line pqg has corresponding triangles in G. If the vertex s coincides with v, we have just one triangle
(st,u). O

T150: A vertex pair (p,q) in astrongly twisted path T is alwaysjoined.

Proof: By definition, atwisted path T, has a spanning path Py(p,.p,....,p,) and paths P,(p,,p,....), P,(p.,Ps,.-.)
such asthe alternate vertex sequences of P, and V(P,) = V(P,) O V(P,). By hypothesis T is strongly twisted,
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hence when there are edges p,p., and p, ,p,, there is an edge p,p,. Consequently when a strongly twisted
path (p,,p,) exist, there exist edges (,,P,), (PyP,), .-, (PR)- As T, is connected, for all vertex pair (p,q) has
apath (p,q) and then an edge pg alwaysexists.

T152: A path in the core-map of the delta graph of a graph G correspondsto a twisted pathin G .

Proof: To prove this, it is enough to show that every 2-path in the core-map M_ of the delta graph G, of G
corresponds to a twisted path in G. T149 says that a core-line of the delta graph G, has corresponding
triangles in G. When there is a 2-path (p,q,r) in M_, where p(s;t,u), q(t,u,v), r(u,v,w) are core-points and
st,u,v,w are verticesin G, we have edges s, tu, uv, vw. Since points p,q,r are not pivot-points, vertex pairs
(s,u), (t,v), (uw) must be joined in G respectively. That is, there are edges su, tv, uw in G, then we have
triangles (st,u), (t,uv), (uv,w) in G. Hence whenever there is a 2-core-path (p,q,r), there is a
corresponding twisted path (sit,u,v,w) in G. Especially when t coincides with v, there are two triangles
(st,u), (ut,w) and two twisted paths (s,t,u,w) and (s,u,t,w). O

Note: Edges su, tv, uw are not necessarily core-lines. Therefore a connected component of the core-map
M, of G, isnot necessarily aclique of G. The situation isthe same for T148.

T160: A graph G has a pivot-cycle iff G has an OZ-cycle.

Proof: By T21, if G has an OZ-cycle, G has a pivot-cycle. Then we will show the converse. Let
C,(pyPw--»P,,) be the front-cycle of a pivot-cycle Pv in G. By definition every delta (p_,,p,p.,) on C, isa
pivot and there is an anti-path aP, connecting p,, with p,,, in N(p). Consider the case such that for every
deltas (p_.,p,p..,) in C,, 0<i < 2m,+- ismod 2m+1: there is not the edge p_,p.,,- Then C,isan OZ-cycle. In
the other case such that there is an edgep, ,p,., for somek, 0 < k <2m, we show that there is always an even
zigzag path Z, connecting p, , to p,,,. Let aP, be the anti-path connecting p, , to p,.,, 8P, = (P;,0ys---10, Pre)-
Since al of verticesin aP, isin N(p.), We have an even zigzag path Z = (p, ;;P0:Pe-++» Pul,PuPer)- ANd
we exchange the 2-path (p, ,,P.P..) 0n C, by the even zigzag path Z, and get an extended odd cycle C,. We
can repeat this operation until thereisno short chord (i.e., an edge connecting the end vertices of a 2-path

on the cycle) on C, and the obtained odd cycle C, isthe front-cycle of an OZ-cyclein G. O

Rigorous Proof of T160: By T21 if G has an OZ-cycle, G has a pivot-cycle.We show, whenever thereis a
pivot-cycle Pv(C,,C)) in G, there is an OZ-cycle Z(Z,,Z) in G. Let C(p,,p,:---1P,,) be the front-cycle of
pivot-cycle Pv. By definition every delta (p_.p.p.,) on C, is a pivot and there is an anti-path aP,
connecting p., to p,, in N(p). If al the anti-paths aP, in the rear-cycle C, of Pv are edges p_,p.,, in ~G, we
have Z, = (PyPy-iPo) @A Z, = (PyPP, s PomaiPoms)- Otherwise, there is a path P, = (p,,,p,0..P,
Q2P0 PP, @nd an anti-path aP, = (p,, G ,,G,-.-,0,P.,) for each i, 0 < i < 2m, where {q,,
.-G, iSaconnected component in ~N(p). In this case we use k(i) loops p, p, for the rear cycle Z,.

Z,= (P L
ppqu'pquz'pv""qu(l)'pl’ 2k(1)+1
pleZ,l'pZ'QZ,Z'pZ' e 'qzk(Z)'pZ’ 2k(2)+1
pZm' QZm,l' pZm' QZm,Z' o 'QZm,k(Zm) ’ pZm’ 2k(2m) +1
leQD,l' pD'QD,Z' po' o 'qQk(D)) ) 2k(0)

Z,= (P, .

ququz' e 'qu(l)' k(l)
PasPas--+sPas k(2)+1
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Q3,1’Q3,2' b ’Q3,k(3)’ k(3)

QZm-l,l'QZm-l,Z' e 'QZm-l,k(Zm-l)' k(2m-1)
Parm P+ P k(2m)+1
QD,l'QD,Z' e 'QD,k(D)' k(o)
PuPy-- Py k(1)+1
QZ,l'QZ,Z' e 'QZ,k(Z)' k(2)

Pz asPamas++sPamas k(2m1)+1
QZm,l'QZm,Z' e 'qu,k(Zm)' k(2m)
Po:Pos-++Po)- k(0)

2m
the length of Z,,Z, = 2 Z k(i) +2m+1 = odd. l.e., Z, and Z, are odd cycles and their vertex sets coincide
1=

with V(C)) of the pivot-cycle Pv(C,,C,). Hence whenever G has a pivot-cycle Pv(C,,C)) , G has an OZ-
oycleZ(z,2). 1Z|= 1z = 1z = IC). O

T161: A graph G hasa pivot-cycleiff G has an elementary pivot-cycle.

Proof: See Gallai, 1967 [3]. O

T170%* For every berge graph G,, there exists a perfect graph G, obtained by adding edges to G, satisfying
the following inequality: maximum clique size of G, < maximumclique size of G,. *

Proof: Pending...
T171: Every vertex induced subgraph of a berge graph is a berge graph.

Proof: Let Bs be an induced subgraph of aberge graph B. Whenever Bs has an odd hole, B has an odd hole.
Aswell whenever Bs has an odd anti-hole, B has an odd anti-hole. This contradicts the definition of berge
graph. Hence a subgraph of a berge graph has neither odd holes nor odd anti-holes. I.e., a subgraph of a
berge graph is a berge graph. O

T172: A perfect graph isa berge graph.

Proof: By T3, aperfect graph G and the complement has no odd holes. AssumeG has an odd anti-holeaH.
Consider the complement aG of G. By T1, aG is perfect. As G has an odd anti-hole aH, aG has an odd
hole H. I.e., a perfect graph aG has an odd hole H. This contradicts T3, hence a perfect graph G has
neither odd holes nor odd anti-holes. As well a perfect graph aG has neither odd holes nor odd anti-holes
|.e., aperfect graph isa berge graph. O
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Appendix

Gallai’s Gamma Table
Minimally Intransitive Graph Collection

M 2 3 [ 4
2
2
2n 2
2n 1
2n 2 m 1 ] 0 1
0
0 1 [ ® [ 4 ® [ [ ]

Ip=2n+1, I, =2n+1,n 22 lp=2n+1, [, =2n+3,n 22 Ip=2n+1,1,=2n+4, n 22 Ip=2n+1, ;= 2n+5,n 22

s

3

O
Ih=3,1,=n,n=26

lp=3, [=y+t5,y=21 lp=3, [=y+5,y=21

10:3, 11:7 l():3, 11:7 l():3, 11:7

29



