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Abstract

An orientation of an undirected graph G is a directed graph D obtained by giving an orientation to every
edges of G. An orientation D is complete iff whenever there are edges ab, bc, there is an edge ac in D. A
graph G is transitive iff G has a complete orientation. If there are edges ab, bc and an anti-path (a,c) (i.e., a
path in the complement of G) in the subgraph induced by the neighbors of b in G, the triplet (a,b,c) is
called a pivot on G and the middle vertex b is the pivot-vertex of it. We proved in T14 that a graph G is
transitive iff G has no pivot-cycles (i.e., a closed odd sequence of pivot-vertices) and got a polynomial-
time algorithm to recognize a transitive graph and to construct a complete orientation of the graph.

If a graph G has a pivot-cycle and the size of the cycle equals the size of G, we say that the pivot-cycle is
spanning. An intransitive graph G is called minimally intransitive iff G becomes transitive by removing
any vertex of G. We say a graph G is strongly intransitive iff both G and the complement of G are
minimally intransitive and have a spanning pivot-cycle. We proved in T24 that odd holes and odd antiholes
are strongly intransitive graphs. Regarding the long standing conjecture presented by Berge known as the
Strong Perfect Graph Conjecture, we propose the following:

C1: A strongly intransitive graph is minimally imperfect.
C2: A strongly intransitive graph is either an odd hole or an odd antihole .
C3: A graph is perfect iff it has no strongly intransitive graphs .
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Comments

This paper is still in the state of draft as easily to be seen. Currently we have seven pending theorems, T15,
T16, T26, T28, T30, T31, T170 relevant to our conjectures. We performed this study on the net, have
found so many colleagues and teachers there and get a plenty amount of precious information from
enormous on-line stuffs and books. It happened at a mailing list theory-edge∗  in the end of the 20th century
and has been continuing up to now.

On Octover 20, 2000, a mail titled “odd holes, perfect graphs, and theta fn” was posted to the list. It was
written by E. Lehman, a member of the list to digest some indigestion in the process of reviewing A.
Plotnikov’s paper [19]. The paper regarded the Minimum Clique Partition Problem and presented an
approach through transitivity and some hereditary property of graphs.

Due to the mail we came to know those things for the first time such as a hole, perfect graphs, the theta

function, and Berge’s conjecture. The theta function, sometimes called the sandwich function, calculates
Lovász’s number θ  between the largest clique size ω and the chromatic number χ of a graph in
polynomial time [13]. It is known NP-complete in general to calculate those numbers. However as ω and χ
coincide for a perfect graph (just the definition of perfect graphs), one can get the solution in polynomial
time. This was presented by Grötschel, Lovátz, and Schrijver in 1981 [7]. Then we understood that it

would be solved anyway.

But what’s an odd hole? It was the question. After a mean while, we reached at the notion OZ-cycle. A
transitive contradiction caused by an OZ-cycle in a plotnikov digraph, i.e., an orientation of an undirected
graph, is inevitable by any means, surely a very strange cycle. We ascertained that odd holes and odd

antiholes are the representatives of this kind (T18). But how can we formulate and give it a reasoning?

Finally we found out a simple fact that the transitive relation is entirely local. We know that an eternal
triangle is fatal at any time. We summarized this insight to T11: the Triple Contradiction Theorem which
states “a directed graph D is transitively complete iff every vertex triple of D is not in triple contradiction”.
Some authors regard it as a well-known obvious observation. Well, how can the locality be transported to
the remote?

Perhaps the answer is “by paths”. We found two kinds of particular paths, zigzag paths and twisted paths.
Those are strands of twisted triple strings. Roughly speaking, all of paths in the pivot-map** of the delta

graph** of G are zigzag and all of paths in the core-map** are twisted (T152). If the all paths are linear, the
transitive orientation is easily completed but it returns to itself in circulation. An OZ-cycle, i.e., odd zigzag
cycle returns the transitive contradiction.

The OZ-cycle was found first by Ghouillà-Houri, 1962 [4], and independently by Gilmore and Hoffman,
1964 [5]. Our earliest conclusion was that a graph G is transitive iff G has no OZ-cycles. This assertion
holds (T25). However it was disproved temporarily by G. Stertenbrink. (At the time we cannot help
considering that a cycle must be elementary. Otherwise we had already solved it then.) He showed a
counter example which has no elementary OZ-cycles but is intransitive. It was the blessed complement of
C6. Soon the fact was uncovered that every antihole greater than four is intransitive  (T20).

∗  theory-edge: http://groups.yahoo.com/group/theory-edge
**

 pivot-part, core-part, delta graph: Shall be described later.
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To prove it, we invented ∆-cycle and round-fan, and succeeded to show that all antiholes except ~C4 (i.e.
the complement of a cycle of size 4) are round-fans in fan-contradiction. Consequently the revised T14
came to be “a graph G is transitive iff it has no OZ-cycle and no round-fan in fan-contradiction”. This
formulation looked like too artificial and this time a counterexample was found by the author himself.
Gradually we noticed that to formulate transitivity, we have to deal with the complements of graphs. A fan

is a subgraph of G induced by Vf ∪  {p}, where Vf is the vertex set of a connected component of the induced
subgraph of ~G by the neighbors of the vertex p in G. The notion of fan was discovered by Tibor Gallai in
1963 [3], although Gallai himself did not give it a name.

Now, we have the final version of T14, i.e., “a graph G is transitive iff G has no pivot-cycles”. Pivot-cycle
is a generalization of OZ-cycle and a pivot is a kind of fan. So we and Gallai share the notion pivot-cycle.
Some literature deal with asteroids with respect to anti-transitive graphs (i.e., co-comparability graphs).
We know that an asteroid is nothing but a reversed pivot-cycle. Gallai [3] presented 19 patterns of
minimally intransitive graphs. Among them, 1 is odd hole, 3 are odd cycles with two neighbors and
remaining 15 are (the complement of) 3-asteroids. He proved every intransitive graph contains one of
these 19 minimally intransitive graphs.  (See Appendix, the Gallai’s Gamma Table.)

We construct the delta graph Gd of G. A delta is a 2-path in G and a vertex of Gd is a delta of G. We call a
vertex of Gd a point and an edge a line. If the edges in G of a delta pair forms a 3-path in G, the
corresponding point pair is joined in Gd. A delta (a,b,c) is called a pivot if there is an anti-path connecting
a with c in the subgraph induced by the neighbors of the middle vertex b in G. A point in Gd is called a
pivot-point if the corresponding delta is a pivot, otherwise called a core-point. Accordingly the delta graph
Gd is partitioned into two parts of the pivot-map and the core-map. An odd cycle in the pivot-map
corresponds to a pivot-cycle in G.

The following statements are equivalent for an undirected graph G (T25).
(1) G is transitive.

(2) G has no OZ-cycles.

(3) G has no pivot-cycles.

(4) G has no elementary pivot-cycles.

(5) ~G has no asteroids.

The proof of (2) was presented by Ghouillà-Houri [4], Gilmore & Hoffman [5] in early 60’. (2) is the base
of most succeeding studies including implication class* with respect to the transitivity. Gallai [3] solved
(3), (4), (5). We proved them solely without using any preceding results. (In our formulation, the
equivalence of (3) and (5) is given by the definition from the beginning. (4) remains for our homework.)

What the author is concerning is that none of literature mentioned the loops in OZ-cycles. In his humble
opinion, to establish (2), it is necessary to allow loops in OZ-cycles. Otherwise infinite counterexamples
will be inevitable. Adding to the above, Gallai [3] showed “G is transitive iff ~G has no simple asteroids”.
However the usage of “simple” in his paper is very particular and not usual. Some graphs G are minimally

* implication class: Graph G(V,E), binary relation Γ on E: abΓa’b’ ⇔ a = a’ and bb’ ∉  E or b = b’ and aa ∉  E. The reflexive, transitive

closure Γ* of Γ is an equivalence relation on E, and partitions E into the implication classes of G [21].
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intransitive but the asteroid in ~G is not simple in normal meaning.

Gallai [3] constructed a fan graph to prove (3) and (4). The fan graph Fg is a derived graph from G such
that a vertex of Fg is a fan f(p,aC), where p is a vertex of G and aC is the vertex set of a connected
component of ~N(p), and two vertices f1(p1,aC1) and f2(p2,aC2) of Fg are joined iff p1 ∈  aC2 and p2 ∈  aC1. An
odd cycle in the fan graph Fg corresponds to a pivot-cycle of G.

Our proof of T14 is done in a constructive way, i.e., by presenting algorithm A to construct a complete
orientation of a transitive graph. The algorithm recognizes a transitive graph in polynomial time. The time
complexity of algorithm A is estimated O(n6). The remarkable point of our algorithm is that once the delta
graph is constructed, all of orientations is determined straightforwardly. The bottleneck of the algorithm is
the initializing cost of the delta graph. Some linear time algorithms are already known for graph
transitivity [17], [21]. They avoid such initial cost in a highly technical way and apply a divide & conquer
method by decomposing the objective graph. We admit that the efficiency is not our principle goal.

Our main target is to prove positively the Strong Perfect Graph Conjecture proposed by Claude Berge [1],
that is, “a graph G is perfect iff neither G nor the complement contains an odd cycle of length at least five

as an induced subgraph. In spite of the dedicated enormous amount of studies, the conjecture is still open
after 40 years. The course we chose to attack the SPGC peek is the transitivity. The author thinks the
perfection of graphs and the transitivity have a very strong connection with each other. Some large
subclasses of perfect graph class can be characterized by transitivity. Interval graphs is a subclass of anti-
transitive graphs, permutation graphs is both transitive and anti-transitive graphs, and so on.

We provided three (incomplete) solutions, i.e., Proof 1, 2, and 3 of T17 for SPGC. 1 and 3 are based on
the idea of getting a transitive / perfect supplement graph by adding edges to a graph which has no odd
holes and no antiholes without increasing the maximum clique size. Wagler [22] showed in her Ph.D.
thesis, there are such critically perfect graphs that cannot be reached by the deletion or the addition of one
edge. This means that the Atlas of the perfect graphs is very intermingled like fractals.

The difficulty of course 3 is in the absence of an established method to recognize or compose a perfect
graph. The course 1 is somehow hopeful as it substitutes the transitivity for the perfection. We start at the
initial digraph D having all of vertices of G and no edges. Trivially the initial digraph D is transitively
complete and we move an edge from G to D step by step. If D is not complete, add a supplemental edge to
D until it becomes complete. If the addition of edges do not increase the maximum clique size till the end,
we have done.

Currently we are concentrating to the course 2, where we introduce the notion of strongly intransitive. An
intransitive graph G is minimally intransitive iff G becomes transitive by removing any vertex of G. We
say a graph G is strongly intransitive iff both G and the complement of G are minimally intransitive and

have a spanning pivot-cycle. To solve the SPGC, we must prove the following 6 theorems.

T24: Odd holes and odd antiholes are strongly intransitive graphs .
T26� A strongly intransitive graph is imperfect.
T27: A strongly intransitive graph is a minimally imperfect graph.
T28� The maximum clique size and the chromatic number of a graph which has no strongly intransitive

graphs are coincident.
T29: A graph which has no strongly intransitive graphs is perfect .
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T30� A strongly intransitive graph is either an odd hole or an odd antihole .

Among them, T24, T27, and T29 are already given proofs. T26, T28, and T30 are unproved. Since the
representation of strongly intransitive graphs is very clear, we suppose to solve T26 and T30 is very
hopeful. T28 may be not so easy. If we could prove T30, the probability for SPGC becomes very high, on
the other hand, even if we proved T26, there remains some probability that the strongly intransitive graphs
is not identified with the class of odd holes and odd anti-holes.

Berge [1] posed in 1960 one more conjecture called the Weak Perfect Graph Conjecture. It was proved by
Lovátz, 1972 [16] and now known as the Perfect Graph Theorem. It states that a graph is perfect iff its

complement is perfect. Between those two conjectures, Vasek Chvátal, 1984 [2] interposed a conjecture
called the Semi-Strong Perfect Conjecture, which states “if a graph has the P4-structure of a perfect graph

then it is perfect”. P4 denotes a 3-path, i.e., an elementary path of length three. A graph G has the P4-
structure of a graph H if there is a bijection f between the set of vertices of G and the vertices of H such
that a set S of four vertices in G induces the P4 in G iff f(S) induces a P4 in H.

Since the complement of a 3-path is a 3-path again, the P4-structure of a graph and its complement are
isomorphic. Accordingly SSPGC implies WPGC. Chvátal [2] gave a rough proof for a theorem which
states that the only graphs having the P4-structure of an odd cycle of length at least five are the cycle itself

and its complement, and showed SPGC implies SSPGC applying the theorem. This conjecture was proved
by Reed [20] in 1987 and now called the Semi-Strong Perfect Graph Theorem.

Hougardy [11] showed that the Semi-Strong Perfect Theorem is rather weak for some graph classes to
certify the perfection and asked “whether one can replace the P4 in this theorem by some other graph”. He
answered to it by himself, “It is easily seen that the only possible candidates for such a result are the P3

and its complement”. We agree to this. Our delta graph is a kind of representation of P3-structure.

Wing is the one more approach to use P4-structures. An edge in a graph G is called a wing if it is one of the
two non-incident edges of an induced P4 in G. For a graph G: its wing-graph W(G) is defined as the graph
whose vertices are the wings of G and two vertices in W(G) are connected if the corresponding wings in G
belong to the same P4. Hoàng [10] has conjectured that a graph is perfect if its wing-graph is bipartite.
The graphs whose wing-graph is bipartite are called Hoang-graphs. Up to now his conjecture is still open.

Surely we have already a plenty of conjectures. I’m afraid that we are merely increasing the number of the
unsolved. So we are going to solve our conjecture by ourselves, provided we can do it... Well, let us share
the problem. The following is our proposal to the readers. Be enjoyed!

C1: A strongly intransitive graph is minimally imperfect.
C2: A strongly intransitive graph is either an odd hole or an odd antihole.
C3: A graph is perfect iff it has no strongly intransitive graphs.

M. N.  March 17, 2001
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Definition

To solve the problem, we have to come out and go into three phases of graphs, undirected graphs, directed graphs and the

complement of the graphs. To distinguish those objects, we provide the naming of ...digraph for directed graphs and anti... for the

complements. Our definition for paths and cycles follows C.L. Liu [15]. Every subgraph in this article is a vertex induced

subgraph unless mentioned explicitly. We say a graph G has a graph H. This implicitly represents that H is a vertex induced

subgraph of G.

A path is an alternating sequence of vertices and edges incident with each other which begins and ends at
vertices. We say a path is elementary if no vertex occurs more than once in the sequence. As well a path is
simple if no edge occurs more than once in it. An anti-path in a graph G is a path in the complement of G.
A k-path is an elementary path of length (i.e., the number of edges) k. ~G denotes the complement of G.

1-path

2-path

3-path

3-anti-pathan elementary path

(1,2,3,4,5,6)

a simple path

(1,2,3,5,4,2,5,6)

a path

(1,2,3,5,4,2,3,5,6)

1 2

3

4

5

6

1

3

5
2

4

61 2

3

4

5

6

A graph G is connected iff there is a path connecting a pair of vertices for all vertex pair in G. A graph G
of size > 2 is called 2-connected iff there are at least two distinct elementary paths connecting each pair of
vertices. A graph G is anti-connected iff the complement of G is connected. N(v) denotes a subgraph of G
induced by all the neighbors of the vertex v. Accordingly ~N(v) is the subgraph of ~G induced by all the
neighbors of v in G.

connecteddisconnected 2-connected G N(p)

PP

~N(p)

P

A cycle is a closed path such that the initial vertex coincides with the end vertex. A multigraph is a graph
allowed to have more than one edges joining the same two vertices. A simple graph has no such multi-
edges. A loop is an edge joining a vertex to itself. We assume that any vertex in either a simple graph or a
multi-graph has no loops except in the case when we consider OZ-cycles in a simple graph. A vertex
induced subgraph H of size > 3 of a graph G which is an elementary cycle having no chords is called a
hole. An antihole of G is a hole in the complement of G.

a simple cycle a simple graph multi-edges a loop a hole an antihole

An induced subgraph Z of a graph G is a zigzag path iff it has a spanning path P0(p0,p1,...,pn), and anti-
paths aP1(p0,p2,...), aP2(p1,p3,...) such as the alternate vertex sequences of P0, V(P0) = V(aP1) ∪  V(aP2). An
induced subgraph T of a graph G is a twisted path iff it has a spanning path P0(p0,p1,...,pn) and paths
P1(p0,p2,...), P2(p1,p3,...) such as the alternate vertex sequences of P0, V(P0) = V(P1) ∪  V(P2). A twisted path
T is strongly twisted iff every sub-path in T is twisted. Note: “spanning path” not necessarily implies
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“elementary” here.

a zigzag path

a twisted path a strongly twisted path (image)

An induced subgraph Z of a graph G is an OZ-cycle Z(Z0,Z1) if Z is a closed odd zigzag path in G, where Z
has a spanning cycle Z0(p0,p1,...,p2m), m > 1 and a spanning anti-cycle Z1(p0,p2,...,p2m-1) of the alternate vertex
sequence of Z0. We call the spanning cycle Z0 / Z1 the front-cycle / rear-cycle of Z respectively. The rear-

cycle Z1 is allowed to pass through loops. We sometimes call the front-cycle Z0 itself an OZ-cycle.

0

1
23

4

2m
2m-1

2m-2

an OZ-cycle

A subgraph of a graph G induced by Vf ∪  {p} is a fan F(p,Vf) on G, where p is a vertex of G, Vf ⊆  V(N(p))
and the subgraph induced by Vf is anti-connected in N(p). The vertex p is called the fan’s pivot. A fan
graph Fg is a derived graph from G such that a vertex of Fg is a fan f(p,aC), where p is a vertex of G and aC

is the vertex set of a connected component of ~N(p), and two vertices f1(p1,aC1) and f2(p2,aC2) of Fg are
joined iff p1 ∈  aC2 and p2 ∈  aC1.

1

2

34

5

G

1

2

34

5

fans (1,{2,3}), (1,{4,5})

1,{2,3}1,{4,5}

2,{4,5}

2,{1}

3,{1}

3,{4,5}4,{2,3}

4,{1}

5,{2,3}

5,{1}

the fan graph of G

A delta in graph G is a 2-path (a,b,c) in G. If an anti-path connects a with c in N(b), the delta (a,b,c) is a
fan f(b,{a,c}) and we call the fan f itself a pivot on G. The middle vertex b is called the pivot-vertex. A
path P of G is a pivot-path / core-path in G if every delta in P is a pivot / non-pivot respectively. Note: for
a triangle (a,b,c): there are three distinct deltas. A delta (a,b,c) coincides with the delta (c,b,a).

A pivot-cycle Pv(C0,C1) is a subgraph of G induced by V(C1), where V(C0) ⊆  V(C1), V(C0) forms a closed
odd pivot-path C0(p0,p1,...,p2m), m ≥ 1 in G, and V(C1) forms an anti-cycle C1 in G such that for each vertex
pi in C0: there is an anti-path aPi connecting pi-1, pi+1 in N(pi), operations +- mod 2m+1, i.e., C1 =
(aP1,aP3,...,aP0,aP2,...,aP2m). We have an asteroid Ar(C1,C0) which is a subgraph of ~G induced by the
vertex set V(Pv) and corresponds to a pivot-cycle Pv(C0,C1) in G. Hence “G has a pivot-cycle” is exactly
equivalent to “~G has an asteroid”.
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We call the odd cycle C0 of a pivot-cycle Pv(C0,C1) the front-
cycle of Pv and the anti-cycle C1 the rear-cycle of Pv. Similarly
an asteroid Ar(C1,C0) has its front-cycle C1 and odd rear-cycle C0.
A rear-cycle always implies an anti-cycle. We may call a vertex
in the front-cycle C0 of a pivot-cycle a pivot and the odd cycle C0

itself a pivot-cycle. Similarly we may call the front-cycle C1 of an
asteroid Ar itself an asteroid. So it can be considered that there
are just two cycles of the pivot-cycle C0 and asteroid C1.

We call a pivot-cycle (C0,C1) / asteroid (C1,C0) a k-pivot-cycle /
k-asteroid respectively, where |C0| = k, k is odd. Similarly we call
an OZ-cycle (Z0,Z1) a k-OZ-cycle such that |Z0| = |Z1| = k, k is odd.
An induced subgraph of a graph G such as a k-OZ-cycle / k-
pivot-cycle / k-asteroid is spanning if k equals the size of G.
Note: There is no 3-OZ-cycle, i.e., OZ-triangle. We say a pivot-cycle / asteroid is elementary / simple
according as the cycle C0 is elementary / simple respectively. As well an OZ-cycle is elementary / simple
according as the cycle Z0 is elementary / simple respectively.

01
23

2m
2m-1

2m-2

a pivot-cycle

aPaP

aP

aP aP

aP

aP2m-2

2m

2m-12

3

1
0

The delta graph Gd of a graph G is a derived graph from G such that a vertex p of Gd is a delta (i.e., a 2-
path) of G. A vertex pair (p1,p2) in Gd is joined iff p1 and p2 have a common edge in G and the edges of
delta p1, p2 form a 3-path in G. We call a vertex / edge of the delta graph Gd a point / line respectively. We
make a point set partition ∏ of Gd such that for all vertices x in G: every point p which has the middle
vertex x is in the same point subset ∏(x).

We call an element in ∏ a pointset and ∏ the pointset partition
of delta graph Gd. A point of Gd corresponds to a delta in G and a
pointset of ∏ in Gd corresponds to a vertex in G.

A point p of the delta graph Gd of G is a pivot-point if p is a
pivot in G, otherwise a core-point. Accordingly the delta graph
Gd can be partitioned into two parts. We call the subgraph Mr /
Mc induced by all of pivot-points / core-points of Gd the pivot-
map / core-map respectively. Lines in a pivot-map / core-map
are called pivot-lines / core-lines. We make a directed graph Dp

called the pivot digraph which contains all the points of the
delta graph Gd, all the pivot-lines (i.e., edges of pivot-map Mp)
and lines connecting the pivot-map Mp with the core-map Mc.

net

anti-net pivot-cycle

asteroid

1

2

3 4

5 6

2

6

1

5

3 4

1

4
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2

6

3

2

6

3

1

4
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a delta graph

pointset

pivot-point

core-point

pivot-line
pivot-core-line
core-line



	

A directed path P is alternating if every two edges adjacent on P have an opposite orientation to each
other. A directed path P is linear if every edge on P has the same orientation.

We call a property of a directed graph D transitivity such that whenever directed edges
ab and bc are in D, an edge ac is in D for all vertex triple (a,b,c) of D. A directed graph
D is transitively complete iff D is acyclic and has the transitivity property. The
definition is valid for a case where D is a directed multigraph.

 We say a vertex triple T(a,b,c) of a directed graph D is in triple contradiction when T
is (1)a cyclic triple, or (2)a linear triple (i.e., forms a linear 2-path, lacking the third
edge). Besides we call the state of (1) circular contradiction and (2) linear
contradiction on D.

Edges e1, e2 of a directed graph D are coherent for a vertex v in D iff both of e1 and e2 are either incoming
edges or outgoing edges of v. A directed multigraph Dm is coherent iff for each vertex pair in Dm: all edges
joining the two vertices have the same orientation.

An orientation of an undirected graph G is a directed graph D obtained by giving an orientation to every
edges of G. We call the orientation D of an undirected graph G a plotnikov digraph of G. A plotnikov
digraph D is complete iff D is transitively complete. An undirected graph G is transitive iff it has a
complete plotnikov digraph. Transitive graphs are also called comparability graphs [6] or transitively
orientable graphs [9].

an alternating directed path

a linear  directed path coherent edges for p

p

coherent for independent 

set partition Πcoherent multi-edges

A directed graph D has an independent set partition ∏ (like undirected graphs). If for all independent set
pair (P,Q), P,Q ∈  ∏: for all vertex pair (p,q), p ∈  P, q ∈  Q: each edges pq has the same orientation like
P→Q, we say edges of D are coherent for ∏.

Suppose an undirected graph G1, an independent set partition ∏ of G1 and its plotnikov digraph D1. We
have a reduced graph G0 from G1 such that a vertex of G0 is an element of ∏ and an edge of G0 is reduced
multi-edges of an independent set pair of ∏. We call G0 a meta-graph of G1 and a plotnikov digraph D0 of
G0 a meta-plotnikov digraph of G1. We will call this graph operation ∏∏∏∏-reduction.

When a plotnikov digraph D1 of G1 is
coherent for the independent set
partition ∏ of G1 and the orientation of
the meta-plotnikov digraph D0 of G1

corresponds to the orientation of the
elements of ∏, we say the plotnikov
digraph D1 is coherent with the meta-
plotnikov digraph D0.

linear triple
(linear contradiction)

cyclic triple
(circular contradiction)

Plotnikov Digraph
(Extension-Digraph)

Graph

(Extension-Graph)
Meta-Graph

Meta-plotnikov Digraph
-Reduction

-Reduction

Orientation Orientation

Π

Π






On the contrary, a graph G1 is called an extension-graph of a graph G0 when G0 is a meta-graph of G1. A
plotnikov digraph D1 of G1 is called an extension-digraph of G0. If the extension-digraph D1 is coherent

with the independent set partition ∏ of G1, we say that the extension-digraph D1 is coherent. The delta

graph Gd of a graph G is an extension-graph of G and a plotnikov digraph Dd of a delta graph Gd is an
extension-digraph of G.

A transitive graph G1 obtained from an intransitive graph G0 by adding edges of an edge set α is called a
supplement graph of G0, and the edge set α (an edge subset of the complement of G0) is called the
supplement edge set. We say supplement edge set α is minimal iff G1 becomes intransitive by eliminating
any edge of α.

A graph G is said to be contradictious iff G and the complement are elementary OZ-cycles and have no

smaller OZ-cycles. An intransitive graph G is minimally intransitive iff G becomes transitive by removing
any vertex of G. We say a graph G is strongly intransitive iff both G and the complement of G are

minimally intransitive and have a spanning pivot-cycle.

A graph G is perfect iff the maximum clique size equals the chromatic number for all induced subgraphs
of G. With respect to an arbitrary graph, maximum clique size = necessary minimum coloring number
≤ chromatic number = minimum independent set partition number. An imperfect graph is minimally
imperfect iff it becomes perfect by removing any vertex of it. A graph G is berge iff G and the
complement of G have neither odd holes nor odd antiholes.

Berge’s Conjecture: A graph G is perfect iff G is a berge graph .
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Theorems

T1:  [Perfect Graph Theorem] The complement of a perfect graph is perfect.

T2: An induced subgraph of a perfect graph is perfect.

T3: A perfect graph and its complement have no odd holes.

T4: When a graph G and its complement have no odd holes, any induced subgraph of G and its

complement have no odd holes.

T5: (Removed.)
T6: A vertex induced subgraph of a transitively complete directed graph is transitively complete.

T7: An induced subgraph of a transitive graph is transitive.

T8: A chain of a complete plotnikov digraph D of a transitive graph G is a clique of G and an anti-chain

of D is an independent set of G.

T9: [Dilworth's Theorem] The maximum anti-chain size of a partially ordered set P equals the minimum

chain partition number and the longest chain length equals the minimum anti-chain partition number.

T10:  A transitive graph is perfect. (The converse is not true.)
T11:  [Triple Contradiction Theorem] A directed graph D is transitively complete iff every vertex triple of

D is not in triple contradiction.
T12:  A plotnikov digraph D is complete iff D has the transitivity property .
T13:  When an OZ-cycle Oz and its complement have no odd holes, there exists at least such one short

chord (i.e., an edge joining endpoints of a 2-path on the cycle) of Oz that adding the edge to Oz makes

an even hole including the edge. (Disproved by Stertenbrink.)
T14:  [Algorithm A] A graph G is transitive iff G has no pivot-cycles. (A complete orientation algorithm

for transitive graphs)
T15:  [Algorithm B] A complete supplemental plotnikov digraph of an arbitrary graph with minimal

supplement edge set can be obtained in polynomial time . �
T16:  [Algorithm C] If a graph G0 and its complement has no odd holes, there exists a supplement graph

G1 of G0 satisfying the inequality: maximum clique size of G1 ≤ maximum clique size of G0. �
T17:  [Berge's Conjecture] A graph is perfect iff it is a berge graph.

T18:  Odd holes and odd antiholes are contradictious graphs.

T19:  [Algorithm P] A transitive graph G1 has always a complete plotnikov digraph D1 coherent with the

meta-plotnikov digraph D0 of G1. (A coloring algorithm for transitive graphs)
T20:  An arbitrary antihole of size > 4 is intransitive.

T21:  Whenever a graph G has an OZ-cycle, G has a pivot-cycle .
T22:  A graph G is intransitive if G has a pivot-cycle .
T23:  A graph G is strongly intransitive if G is a contradictious graph.
T24:  Odd holes and odd antiholes are strongly intransitive graphs .
T25:  The following statements are equivalent for an undirected graph G.

(1)G is transitive.

(2)G has no OZ-cycles.

(3)G has no pivot-cycles.

(4)G has no elementary pivot-cycles.

(5)~G has no asteroid.

(6)The pivot-map of the delta graph of G is bipartite.

T26:  A strongly intransitive graph is imperfect. �
T27:  A strongly intransitive graph is a minimally imperfect graph.
T28:  The maximum clique size and the chromatic number of a graph which has no strongly intransitive

graphs are coincident. �
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T29:  A graph which has no strongly intransitive graphs is perfect .
T30:  A strongly intransitive graph is either an odd hole or an odd antihole . �
T31:  A graph is strongly intransitive iff it is a contradictious graph. �
T32:  A graph is perfect iff it has no strongly intransitive graphs .
T100-T125: (10 Theorems were here. They are all valid and have proofs but removed except T104, T123,
     T124, T125. Those are renumbered as T19, T20, T21, T22 respectively.)
T130:  A graph is bipartite iff all its elementary cycles are even .
T131:  A graph is 2-colorable iff it has no odd elementary cycles .
T132:  A bipartite graph is transitive.
T133:  There is no common point in any triangles in the delta graph Gd of a graph G. (A delta graph has no

other cliques than triangles.)
T134:  The pointset partition ∏ of the delta graph Gd of a graph G is an independent set partition of Gd.
T135-T136:  (Removed.)
T137:  A graph G is eulerian iff the edge set of G can be partitioned into elementary cycles .
T138:  A graph G has no pivot-cycles iff the pivot-map of the delta graph of G has no odd elementary

cycles.
T139:  The coupled edges of a pivot are coherent for its pivot-vertex.
T140:  Given a 2-connected graph G, the delta graph Gd of G. An elementary path of length > 2 in G

corresponds to an elementary path in Gd and an elementary path in Gd corresponds to a path in G .
T141:  A graph G has an odd cycle iff G has an odd elementary cycle .
T142:  If a 2-connected graph G has a complete and coherent extension-digraph, then G is transitive .
T143:  A graph G has an odd simple cycle iff G has an odd elementary cycle .
T144:  The following three statements are equivalent for a graph G .

(1)G has an odd elementary cycle.
(2)G has an odd simple cycle .
(3)G has an odd cycle.

T145:  Given a 2-connected graph G, the delta graph Gd of G, the pointset partition ∏ of Gd. A vertex of G

one to one corresponds to a pointset in ∏ and one to many corresponds to points in Gd. An edge in G

one to many corresponds to lines in Gd.
T146:  Given a graph G, the delta graph Gd of G, the pointset partition ∏ of Gd. Suppose points p0,p1 ∈  P,

q0,q1 ∈  Q, P,Q ∈  ∏. Whenever there exist lines p0q0, p1q1 in Gd, the lines p0q1, p1q0 exist in Gd.

T147:  Given a graph G, the delta graph Gd of G, the pointset partition ∏ of Gd, the pivot-map Mp(core-

map Mc) of Gd. A connected component Cp of Mp(Mc) corresponds to a set S of the pointset pairs of ∏
and no other components than Cp have pivot-lines(core-lines) belonging to a pointset pair ∈  S.

T148:  A subgraph of a graph G induced by the vertices of a core-path in G is a twisted path in G .
T149:  A core-line of the delta graph Gd of size > 2 of a graph G has corresponding triangles in G .
T150:  A vertex pair (p,q) in a strongly twisted path Tp is always joined.
T151:  (Removed.)
T152:  A path in the core-map of the delta graph of a graph G corresponds to a twisted path in G .
T160: A graph G has a pivot-cycle iff G has an OZ-cycle .
T161: A graph G has a pivot-cycle iff G has an elementary pivot-cycle .
T170:  For every berge graph G0, there exists a perfect graph G1 obtained by adding edges to G 0 satisfying

the following inequality: maximum clique size of G1 ≤ maximum clique size of G0.�
T171:  Every vertex induced subgraph of a berge graph is a berge graph.
T172:  A perfect graph is a berge graph.
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Proofs

T1: [Perfect Graph Theorem]
The complement of a perfect graph is perfect .

Proof: See Lovász, 1972 [16]. �

T2: An induced subgraph of a perfect graph is perfect .

Proof: By definition if a graph G is perfect, the maximum clique size equals the chromatic number for all
induced subgraphs of G. Let Gs be an induced subgraph of G. Since a subgraph of Gs is a subgraph of G,
for all subgraphs of Gs: the maximum clique size equals the chromatic number. Hence every induced
subgraph of a perfect graph G is perfect. �

T3: A perfect graph and its complement have no odd holes.

Proof: An odd elementary cycle Co is not perfect because, the maximum clique size of Co is 2 and its
chromatic number is 3, hence an odd elementary cycle is imperfect. Assume a perfect graph G has an odd
elementary cycle Co. By T2, Co comes to be perfect. This is a contradiction. Hence a perfect graph has no
odd holes. Assume that the complement aG of a perfect graph G has an odd hole. By T1, the complement
aG of a perfect graph G is perfect. Then it turns that perfect graph aG has an odd hole. This contradicts the
above. Hence the complement of a perfect graph also has not an odd hole, i.e., a perfect graph and its
complement have no odd holes �

T4: When a graph G and its complement have no odd holes, any induced subgraph of G and its

complement have no odd holes.

Proof: We prove the contraposition of the theorem, i.e., when a subgraph Gs of G or its complement aGs

have an odd hole, the graph G or its complement aG have an odd hole. It is obvious that when Gs has an
odd hole, G has an odd hole. As well, when aGs has an odd hole, aG has an odd hole. �

T6: A vertex induced subgraph of a transitively complete directed graph is transitively complete.

Proof: By definition, a transitively complete directed graph D is acyclic and whenever edges ab, bc are in
D, an edge ac is in D for all vertex triple (a,b,c). Since D has no cycles, a subgraph Ds of D also has no
cycles, hence Ds is acyclic. Moreover for all triples of the induced subgraph Ds: transitive triple relations
are always valid. Therefore every induced subgraph of a transitively complete directed graph is transitively
complete. �

T7: An induced subgraph of a transitive graph is transitive.

Proof: Immediate from T6. �

T8: A chain of a complete plotnikov digraph D of a transitive graph G is a clique of G and an anti-chain of

D is an independent set of G.

Proof: A chain Ch is a linear elementary path (p0,p1,..,pm) of a directed graph D. As D is complete,
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whenever edges p0pk-1, pk-1pk exist, an edge p0pk exists in D. Accordingly as we have edges p0p1 and p1p2, we
also have edges p0p2,..., p0pk-1, p0pk. That is, when there is an oriented path (p0,p1,..,pk) in D, there is an edge
connecting the end vertices p0 and pk in D. Hence for all vertex pair (p,q) in Ch: there is an oriented path
(p,q) or (q,p) is in D and the edge pq or qp is in D. Consequently a subgraph of G induced by the vertices
of Ch is a clique of G. An anti-chain aCh is a vertex set of D with no edges connecting the vertices in aCh.
Therefore a subgraph induced by aCh is an independent set of G. �

T9: [Dilworth's Theorem]
The maximum anti-chain size of a partially ordered set P equals the minimum chain partition number and

the longest chain length equals the minimum anti-chain partition number.

Proof: See Mirsky, 1971 [18], Liu, 1985 [15]. �

T10: A transitive graph is perfect. (The converse is not true.)

Proof: By T7, every induced subgraph of a transitive graph is transitive. Then we only need that the
maximum clique size equals the chromatic number for a transitive graph. Let D be a complete plotnikov
digraph of a transitive graph G. By T9, the longest chain length of D equals the minimum anti-chain
partition number. By T8 a chain of D is a clique of G and an anti-chain of D is an independent set of G,
hence the maximum clique size of G equals the minimum independent set partition number. Thus a
transitive graph is perfect. �

T11: [Triple Contradiction Theorem]
A directed graph D is transitively complete iff every vertex triple of D is not in triple contradiction .

Proof: By definition, a transitively complete directed graph D is acyclic and whenever edges ab, bc are in
D, an edge ac is in D for all vertex triple (a,b,c). Since D is acyclic, cyclic triples are not in D. Assume a
linear triple (a,b,c) is in D, i.e., there are edges ab, bc but ac is not. This contradicts the transitivity of D.
Hence transitively complete directed graph has no triple contradiction. Assume there is no triple
contradiction for all triples in D and D has an oriented cycle C(p1,p2,..,pk). Since there is no linear
contradiction, when edges p1p2, p2p3,.., pkp1 exist, edges p3p5,.., p3pk, p3p1 must exist. Therefore it turns that a
cyclic triple (p3,p1,p2) exists. Contradiction. Hence if no triple contradiction on D, then D is acyclic. The
condition that linear contradiction does not exist satisfies the transitivity of D because it implies the status
whenever edges ab, bc exist, an edge ac exists. Accordingly the assertion that every vertex triple of D is
not in triple contradiction is the necessary and sufficient condition for D is transitively complete. �

T12: A plotnikov digraph D is complete iff D has the transitivity property .

Proof: By definition a complete plotnikov digraph D has the transitivity property. To prove the converse, it
is enough to show that if D has the transitivity property, then D is acyclic. Since plotnikov digraph is an
orientation of an undirected graph, there are neither loops nor parallel-edges. Assume D has an oriented
cycle C(p0,p1,...,pm). By hypothesis, whenever directed edges ab and bc are in D, an edge ac is in D. Hence
there are edges p0p2, p0p3,..., p0pm, while the edge pmp0 exists in the cycle C. As the edges p0pm and pmp0 are
parallel-edges, it contradicts the definition of plotnikov digraph. Consequently D has no oriented cycles,
and then D is acyclic and complete. �

T13: When an OZ-cycle Oz and its complement have no odd holes, there exists at least such one short
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chord (i.e., an edge joining endpoints of a 2-path on the cycle) of Oz that adding the edge to Oz makes an

even hole including the edge. (Disproved by Stertenbrink.)

Counter Example: 9 vertices, 17 edges
(1,2),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6),(6,7),(6,9),(7,8),(8,9)

T14: [Algorithm A] A graph G is transitive iff G has no pivot-cycles. (A complete orientation algorithm
for transitive graphs)

Proof: By T22, a graph G with a pivot-cycle is intransitive. Then we prove the converse that a graph G
with no pivot-cycle is transitive. T142 says that if a graph G has a complete and coherent extension-
digraph, then G is transitive. So if the delta graph Gd of G with no pivot-cycles is transitive and if we could
get a complete and coherent plotnikov digraph of Gd, we have done. However this is impossible from T130
which says that there is no common point in any triangles in the delta graph Gd. This means that almost
every triangle in Gd forms so called a net. A net is a graph which consists of a triangle (a,b,c) and edges ax,
by, cz. It is easily ascertained that a net is intransitive. To avoid such a bad configuration, we omit all of
core-lines in Gd and make a complete pivot digraph Dp first.

A pivot digraph is a digraph contains all of pivot-lines and the lines connecting the pivot-map with the
core-map. After we complete the orientation of the pivot digraph Dp, we make up the orientation for the
core-map Mc in the last stage and get a complete plotnikov digraph Pd of G. By T137, all the lines in the
core-map correspond to triangles. That is, there is no linear triples related to the core-map. So by T11, the
only constraint condition of the orientation for the core-map is just to avoid circulation and it is easily
done. We show that if the pivot-map of the delta graph Gd has no odd elementary cycles, a complete
plotnikov digraph Pd of G is to be constructed by the following algorithm. Without loss of generality, we
assume G is 2-connected and the size of G is greater than five.

[Algorithm A]

(1)Given a graph G(V,E). |V| = n, |E| = m.
(2)Make the delta graph Gd of G, the pointset partition ∏ of Gd, the pivot-map Mp, the core-map Mc.
(3)Make a pivot digraph Dp(Vp,Ep), Vp = V(Gd), Ep = E(Gd) - E(Mc).
(4)Get the connected components Cp of the subgraph induced by V(Mp) in Dp.
(5)Pick an arbitrary component Cp ∈  Cp.
  Get a 2-coloring of Cp. If Cp is not 2-colorable end.
(6)Find a predetermined line e in Cp and decide the color orientation.
  For all lines of the component Cp: [Set Orientation] of each line by the color orientation.
(7) For all undetermined lines pq connecting Cp with the core-map Mc, p in Cp, q in Mc:

If there is a predetermined line e in Dp incident with p, let the orientation of e be O,
else an arbitrary orientation be O.

  [Set Orientation] of the line pq by the orientation O.
(8)Continue (5) until connected components Cp becomes empty.
(9)Make a directed graph Pd(V,E).
  Copy the pointset pair orientation of ∏ in Dp to Pd.
  Make the partial order set Op from Pd.
(9)Transform the partial order Op to a total order Ot.
  For all undetermined edges e in Pd: Set the orientation according to the total order Ot.
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(10) Pd is a complete plotnikov digraph of G.

[Set Orientation]
(1) Given a line pq in the pivot digraph Dp, a line orientation Or.
(2) Set the orientation Or to the line pq in Dp.
(3) For all undetermined lines e of the same pointset pair of the edge pq:

  Set the orientation Or to the line e.

(4) Let P,Q,R be pointsets of ∏, p ∈  P, q ∈  Q, P,Q,R ∈  ∏.
For all pointset triangles (P, Q, R) including the line pq:
  If the pointset pair orientation (Q,R) / (P,R) is determined and the 2-path (P,Q,R) / (R,P,Q) is linear,
  and the pointset pair orientation (P,R) / (Q,R) is undetermined, decide the orientation Os avoiding
  circular-contradiction, and for all undetermined lines e of the pointset pair (P,R) / (Q,R):
    set the orientation Os to the line e.

First we construct the delta graph Gd of G, the pointset partition ∏ of Gd, the pivot-map Mp, and the core-
map Mc. The time complexity of step (2) is polynomial for the points number of Gd = the number of the
edge pairs in G ≤ m(n-2) = n(n-1)(n-2) / 2, i.e., at most O(n3). Step (3), we make the pivot digraph Dp

having all the points of Gd. Dp contains all of lines of the pivot-map Mp and all of lines connecting the
pivot-map Mp with the core-map Mc. At step (4) we divide the pivot-map Mp into the connected
components Cp in Dp. Step (5) pick an arbitrary connected component Cp ∈  Cp and get the 2-coloring of
Cp. If Cp is not 2-colorable, Mp is not 2-colorable, and by T131 Mp has an odd elementary cycle and by
T138, T22, G is intransitive. We can get a 2-coloring of an arbitrary 2-colorable graph by a simple
breadth-first-search method. Step (6) set the orientation of lines in the component Cp according to the end
points color(0) / (1). Since all lines of each pointset pair must be coherent, we set the orientation of all
lines of each pointset pair in a bundle by the orientation of the first determined line.

Accordingly it is probable that some lines in Cp are predetermined at some preceding stage. Therefore first
we seek a predetermined line in the component Cp. If a predetermined line p0→q0 exists, we decide the
color orientation like color(p0)→color(q0), else we use the default orientation color(0)→color(1). It is
probable that two points in Cp have different colors and contained in a same pointset. This is a
contradiction but we show it does not happen. Assume points p0 / q0 in Cp have color(0) / (1) respectively
and p0, q0 are in the same pointset. As Cp is connected, there is an odd elementary path P(p0,p1,..,p2m,q0)
connecting p0 with q0 and there must be an line q0q1 doubled over the line p0p1. There are two topological
cases, (1) P = (p0,p1,..,p2m,q0,q1), (2) P = (p0,p1,..,p2m-1,q1,q0). Since the point pair (p0,q0) / (p1,q1) are in a same
pointset of ∏ respectively and there are lines p0p1, q0q1 in Dp, by T146, we have lines p0q1, p1q0 in Dp. For
the first case, the path (q0,p1,..,p2m) is closed and forms an odd elementary cycle. As well for the second
case, the path (p1,..,p2m-1,q1,q0) is closed and forms an odd elementary cycle. These contradict the
hypothesis.

The function [Set Orientation] sets the orientation of an undetermined line pq. All of the lines of the
pointset pair, which contains the line pq, are set by the same orientation in a bundle. If the line pq is in a
pointset triangle (P,Q,R) and the orientation of the coupled pointset pairs forms a linear 2-path, we give a
forced orientation to the third pointset pair to avoid the circulation. Note: Since Cp has no odd cycles, there
is no triangle in Cp. Further from T133 we know that any two triangles in the delta graph Gd have no
common lines, and from T147 that a connected component Cp dominates the orientation of a pointset pair.
Accordingly we do not call [set orientation] recursively.
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Step (7) set the orientation of lines connecting the component Cp of the pivot-map Mp with the core-map
Mc. Since every point p(x,y,z) in Mp is a pivot-point, by T139, lines incident with p must be coherent. If
there is a line e incident with p and predetermined in Dp, then the orientation of e is applied to the other
lines incident with p. If there is no predetermined line, an arbitrary orientation is given to the first line. At
step (8) we complete the orientation of Dp, where the lines of Dp are coherent with the pointset partition ∏.
Step (9) We reduce the pivot digraph Dp to a directed graph Pd.

All of points in a pointset of Dp is contracted to a vertex of Pd and all of lines in a pointset pair in ∏ is
reduced to an edge of Pd. Pd has the same number of vertices / edges of G. The determined line
orientations of Dp are all bundled (i.e., coherent) with each pointset pair orientation. So we can copy the
pointset pair orientations to Pd. We consider the partial order set Op which consists of all of vertices and all
of determined edges in Pd. We can transform the partial order Op to a total order Ot using some topological
sorting method. (See Knuth, 1994 [12].) The only constraint condition for the orientation is being acyclic.
And it is to be fulfilled by deciding the orientation according to the total order Ot, i.e., just give an
orientation to each undetermined edge pq like if p < q in the total order Ot then p→q else q→p.

We decide every lines in the pivot digraph Dp just once. Accordingly the total complexity of algorithm A is
proportional to the number of lines in Dp, i.e, at most O(Cn6), where C is the orientation cost per line.
Costs for making connected components, 2-coloring, topological sorting are polynomial-time respectively.
Thus if the pivot-map Mp of Gd has no odd elementary cycles, we can obtain a complete plotnikov digraph
Pd of G by algorithm A in polynomial time. Hence if the pivot-map Mp of the delta graph Gd has no odd
elementary cycles, G is transitive. Consequently by T138, a graph with no pivot-cycles is transitive. Above
all, the statement holds. �

T15� [Algorithm B] A complete supplemental plotnikov digraph of an arbitrary graph G with minimal

supplement edge set can be obtained in polynomial time .

Proof: Pending...

T16� [Algorithm C] If a graph G0 and its complement has no odd holes, there exists a supplement graph

G1 of G0 satisfying the inequality: maximum clique size of G1 ≤ maximum clique size of G0.

Proof: Pending...

T17: [Berge's Conjecture]
A graph is perfect iff it is a berge graph.

Proof 1: By T172 a perfect graph is a berge graph. Then we will prove that if a graph G and the
complement aG have no odd holes, G is perfect. When a graph G0 and its complement aG0 have no odd
holes, by T16 we have an supplement graph G1 of G0 such that,

    maximum clique size of G1 ≤ maximum clique size of G0

As G1 is obtained by adding edges to G0, the chromatic number of G1 is always larger or equals the
chromatic number of G0. Hence,

    maximum clique size of G0 ≤ chromatic number of G0
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    chromatic number of G0 ≤ chromatic number of G1

Since G1 is transitive, G1 is perfect by T10 and

    maximum clique size of G1 = chromatic number of G1.

Then all the equalities hold in the inequalities above. Hence,

    maximum clique size of G0 = chromatic number of G0

By T4, when a graph G and its complement have no odd holes, any induced subgraph of G and its
complement have no odd holes. Therefore these equalities hold for each subgraph G0 of G, then if graph G
and the complement have no odd holes, G is perfect. By definition, a berge graph and the complement
have no odd holes, hence a berge graph is perfect. We have done. �

Proof 2: By T32, a graph is perfect iff it has no strongly intransitive graphs and by T30, a strongly
intransitive graph is either an odd hole or an odd antihole. Hence a graph is perfect iff it has neither odd
holes nor odd antiholes. Let us show that a graph which has neither odd holes nor odd antiholes is
equivalent to a berge graph. By definition a berge graph has neither odd holes nor odd antiholes. Consider
a graph G which has neither odd holes nor antiholes. Assume the complement aG of G has either an odd
hole H or an odd antihole aH. Then it turns that G has either an odd antihole ~H or an odd hole ~aH. This
contradicts the hypothesis. Hence a graph which has neither odd holes nor odd antiholes is a berge graph.
Therefore a graph G is perfect iff G is a berge graph. �

Proof 3: By T172 a perfect graph is a berge graph. Then we prove that a berge graph is perfect. By T170, a
berge graph B0 has a perfect supplement graph B1 satisfying the inequalities below.
  
    maximum clique size of B1 ≤ maximum clique size of B0         (1)

As B1 is obtained by adding edges to B0, the chromatic number of B1 is always larger or equals the
chromatic number of B0. Hence,

    maximum clique size of B0 ≤ chromatic number of B0           (2)
    chromatic number of B0 ≤ chromatic number of B1             (3)

By hypothesis, B1 is perfect. Hence by the definition of perfect graphs,
      
    maximum clique size of B1 = chromatic number of B1           (4)
  
Consequently, all the equalities hold in the inequalities (1)-(3). Hence,
  
    maximum clique size of B0 = chromatic number of B0           (5)
  
By T171, when a graph G is a berge graph, every subgraph of G is a berge graph. Accordingly equality (5)
holds for all induced subgraphs of G and then G is a perfect graph. Hence the assertion holds. �

T18: Odd holes and odd antiholes are contradictious graphs.
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Proof: By definition, an OZ-cycle Z must have the front-cycle Z0 and the rear-cycle Z1 of the alternate
vertex sequence of Z0. Obviously an odd cycle Co, |Co| = 2m+1, m > 1 is an elementary OZ-cycle for Co has
an elementary spanning cycle Co(p0,p1,..,p2m) and a spanning anti-cycle C1(p0,p2,..,p2m-1) of the alternate
vertex sequence of Co. Apparently the odd cycle Co has no more OZ-cycles.

For the complement aCo of the odd cycle Co, We have the other spanning cycles A0, A1. Start at the vertex
p0 on Co and connect m-th vertices continuously, we obtain an elementary spanning anti-cycle
A0(p0,pm,p2m,pm-1,p2m-1,...,p1,pm+1). This is the front-cycle A0 of aCo. Actually the alternate vertex sequence of
A0 forms a spanning cycle A1(p0,p2m,p2m-1..,p1) and A1 exactly corresponds with Co. Thus A1 is the rear-cycle
of aCo and the complement aCo of the odd cycle Co is an elementary OZ-cycle. The rear-cycle A1 of aCo is
the odd cycle Co itself and there is no other candidate to be the rear-cycle of aCo, hence aCo can not have
any other smaller OZ-cycles than (A0,A1). Accordingly an odd cycle (except triangle) and its complement
are both elementary OZ-cycles and have no smaller OZ-cycles, then these are contradictious cycles. �

T19: [Algorithm P] A transitive graph G1 has always a complete plotnikov digraph D1 coherent with the

meta-plotnikov digraph D0 of G1. (A coloring algorithm for transitive graphs)

Proof: We call a vertex of a directed graph who has no incoming / outgoing edges a source / sink

respectively. As G1 is transitive, we have a complete plotnikov digraph D1 of G1. We will get a minimum
independent set partition ∏ of G1 and make D1 coherent with the meta-plotnikov digraph D0 of G1 by the
following algorithm.

[Algorithm P]
1. Given a transitive graph G1, a complete plotnikov digraph D1 of G1.
2. Copy D1 to D. i = 1.
3. Move all of the sources of D into the vertex set Pi. Increment i.
4. Continue (3) until D becomes empty.
5. Obtained set ∏ = {Pi} is a minimum independent set partition of G1.
   Let G0 be the meta-graph of G1 reduced by ∏ and a plotnikov digraph of G0 be D0.
6. Set the edge orientation of D0 according to the index order of ∏:
   if i < j then Pi→Pj for all i,j , 1 ≤ i,j ≤ |∏|.
7. The plotnikov digraph D1 is coherent with the meta-plotnikov digraph D0.

Since a complete plotnikov digraph D1 is acyclic and by T6 an induced subgraph of D1 is complete (then
acyclic), there are always some sources at step (2). Further |∏| = the longest chain length of D1 because, as
we at first picked all sources of D1 and repeated the step, the steps count exactly corresponds to the longest
chain length. As D1 is complete, by T9 the longest chain length of D1 equals its minimum anti-chain
partition number, and by T8 the minimum anti-chain partition of D1 is identical with the minimum
independent set partition of G1. Therefore ∏ is the minimum independent set partition of G1. From the
description of step (6), it is observed that D1 is coherent with D0. Thus we obtained a complete and
coherent plotnikov digraph D1 with the meta-plotnikov digraph D0 of G1. (The algorithm gives a minimum
independent set partition ∏, i.e., a coloring algorithm of transitive graphs.) �

T20: An arbitrary antihole of size > 4 is intransitive.

Proof: A 5-antihole, i.e., ~C5 = C5 is intransitive. Then we assume that the size of an antihole aH is more
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than 5. Let the antihole of a hole H be aH(p0,p1,p2,p3,p4,..,pn). Vertex pairs (p0,p1), (p1,p2),.., (pn,p0) are not
joined in aH (they are the edges of H) and all other vertex pairs of aH are joined. Consider C5(p0,p2,p4,p1,p3)
in aH. As edges p0p1, p1p2, p2p3, p3p4 are not in aH, deltas (p1,p3,p0), (p2,p4,p1), (p2,p0,p3), (p4,p1,p3) are pivots.
As edges p4p5, p5p6,.., pnp0 are not in aH, the subgraph induced by {p4,p5,...,pn,p0} is anti-connected. Hence
F(p2,{p4,p5,...,p0}) is a fan and the delta (p0,p2,p4) is a pivot. Consequently C5(p0,p2,p4,p1,p3) is a pivot-cycle
and then by T22, G is not transitive. �

T21: Whenever a graph G has an OZ-cycle, G has a pivot-cycle .

Proof: By definition, an OZ-cycle Z(Z0,Z1) has an odd front-cycle Z0(p0,p1,..,p2m), m > 1 and a rear-cycle
Z1(p0,p2,.., p2m-1) of the alternate vertex sequence of Z0. If the rear-cycle Z1 does not contain an anti-loop, i.e.,
for all i, 0 ≤ i ≤ 2m: pi-1 ≠ pi+1, then there is always an anti-edge pi-1pi+1 in Z1, and every 2-path (pi-1,pi,pi+1) is a
pivot. Hence the OZ-cycle Z is a pivot-cycle (Z0,Z1). Whenever there is a loop pp in the rear-cycle Z1 of Z,
there are parallel-edges pq and qp in the front-cycle Z0. In this case, we can remove the loop pp and one
occurrence of the vertex p from Z1 and remove both edges of pq and qp from Z0. This operation doesn’t
change the parity of the front-cycle Z0 and the rear-cycle Z1 still remains as an anti-cycle. Thus we can
always get a pivot-cycle Pv(C0,C1) from OZ-cycle Z(Z0,Z1) even if it has loops, where

the length of C1 = the length of Z1 - k,
the length of C0 = the length of Z0 - 2k = odd,
k = the number of loops in the rear cycle Z1.

Hence if G has an OZ-cycle, G has always a pivot-cycle. �

T22: A graph G is intransitive if G has a pivot-cycle .

Proof: Assume that a graph G has a pivot-cycle Cp. By definition every delta in Cp is a pivot and then by
T139, every pair of adjacent edges on Cp must be coherent in any complete plotnikov digraph. I.e., the
path on Cp must be alternating. However it is impossible as the vertex number of the cycle Cp is odd and
then a linear contradiction is inevitable on Cp. Hence by T11, G is intransitive. �

T23: A graph G is strongly intransitive if G is a contradictious graph.

Proof: By definition a contradictious graph G and the complement are elementary OZ-cycles and have no
smaller OZ-cycles. Then by T160, G and the complement of G have no smaller pivot-cycles, hence by T14,
those are minimally intransitive graphs. Since a contradictious graph is an elementary OZ-cycle and has
no smaller OZ-cycles, the OZ-cycles of both G and the complement are spanning and have no loops.
Therefor it is sure that G and the complement have spanning pivot-cycles corresponding to the OZ-cycles.
Hence a contradictious graph is strongly intransitive. �

T24: Odd holes and odd antiholes are strongly intransitive graphs .

Proof: By T18, odd holes and odd antiholes are contradictious graphs, then by T23 strongly intransitive.
�

T25: The following statements are equivalent for an undirected graph G.

(1) G is transitive.

(2) G has no OZ-cycles.

(3) G has no pivot-cycles.
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(4) G has no elementary pivot-cycles.

(5) ~G has no asteroid.

(6) The pivot-map of the delta graph of G is bipartite.

Proof: By T14 (3) is equivalent to (1). (2) and (3) are equivalent by T160. By definition (5) is equivalent to
(3). By T138 and T130 (6) is equivalent to (3). By T161 (3) is equivalent to (4). �

T26� A strongly intransitive graph is imperfect.

Proof: Pending...

T27: A strongly intransitive graph is a minimally imperfect graph.

Proof: By T26 a strongly intransitive graph is imperfect. By definition, a strongly intransitive graph G is
minimally intransitive, then every proper induced subgraph of G is transitive. As a transitive graph is
perfect by T10, every proper subgraph of G is perfect. Hence strongly intransitive graph G is a minimally
imperfect graph. �

T28� The maximum clique size and the chromatic number of a graph which has no strongly intransitive

graphs are coincident.

Proof: Pending...

T29: A graph which has no strongly intransitive graphs is perfect .

Proof: Suppose a graph G which has no strongly intransitive graphs. It is obvious that every induced
subgraph G1 of G has no strongly intransitive graphs because, if G1 has a strongly intransitive graph G2, it
turns that G has a strongly intransitive graph G2. This contradicts the hypothesis. Hence every subgraph G1

of G has no strongly intransitive graphs, then by T28 the maximum clique size and the chromatic number
are equal for all induced subgraphs of G. Accordingly G is perfect. �

T30� A strongly intransitive graph is either an odd hole or an odd antihole .

Proof: Pending...

T31� A graph is strongly intransitive iff it is a contradictious graph.

Proof: Pending...

T32: A graph is perfect iff it has no strongly intransitive graphs .

Proof: By T29, if a graph G has no strongly intransitive graphs, G is perfect. By T26 a strongly intransitive
graph is imperfect and from T2 a perfect graph has no imperfect subgraphs, hence a perfect graph G has
not a strongly intransitive graph. �

T130: A graph is bipartite iff all its elementary cycles are even .
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Proof: See König, 1936 [14]. �

T131: A graph is 2-colorable iff it has no odd elementary cycles .

Proof: A graph G(V,E) is bipartite if V can be partitioned into two subsets V0 and V1 such that every edge
of G joins a vertex of V0 with a vertex of V1. If a graph G is bipartite, we can give color(0) to V0 and
color(1) to V1. This is a 2-coloring of G. As well it is self-evident that if a graph G is 2-colorable G is
bipartite. Hence bipartite is equivalent to 2-colorable. Since the right statements of T130 and T131 are
equivalent, “G has no odd elementary cycles” is equivalent to “G is 2-colorable”. �

T132: A bipartite graph is transitive.

Proof: By T130, T131 a bipartite graph G has a 2-coloring. Let a plotnikov digraph of G be Pd. Every edge
of G has end vertices, one is painted color(0) and another color(1). We can set all the orientations in Pd as
color(0)→color(1). It is obvious that there is neither a cyclic triple nor a linear triple in Pd. Hence by T11,
Pd is complete and G is transitive. �

T133: There is no common point in any triangles in the delta graph Gd of a graph G. (A delta graph has no
other cliques than triangles.)

Proof: Consider a triangle T(a,b,c) of the delta graph Gd, where a,b,c are points a(p1,p2,p3), b(p2,p3,p4),
c(p3,p4,p5) of Gd and pi is a vertex in G. T forms an edge sequence p1p2, p2p3, p3,p4, p4p5. As T is a triangle,
this sequence must be closed. Therefore the edge p1p2 must coincide with p4p5. I.e., p1 = p4 and p2 = p5 are
required. Hence T(a,b,c) consists of three points a(p1,p2,p3), b(p2,p3,p1), c(p3,p1,p2). Thus a triangle T(a,b,c)
of Gd exactly corresponds to a triangle (p1,p2,p3) of G. Consequently there is no common point in any two
triangles in the delta graph Gd of G. �

T134: The pointset partition ∏ of the delta graph Gd of a graph G is an independent set partition of Gd.

Proof: By definition, a point in Gd is a vertex of Gd and the pointset partition ∏ is a vertex set partition of
Gd such that every point P(s,t,u) in a pointset ∏(t) has the same middle vertex t in G. Let arbitrary two
points in a pointset ∏(t) be P0(s0,t,u0), P1(s1,t,u1). Assume that there is a line P0P1 in Gd. By definition,
points P0, P1 must have a common edge in G. Hence edge tu0 = s1t. This means t = s1, u0 = t and it turns to
P0 = (s0,t,t) and P1 = (t,t,u1). Contradiction. Consequently every point pair (P0,P1) in a same pointset of ∏ is
not joined. Therefore a pointset in ∏ is an independent set of Gd and ∏ is an independent set partition of
Gd. �

T137: A graph G is eulerian iff the edge set of G can be partitioned into elementary cycles .

Proof: See Harary, 1969 [8]. �

T138: A graph G has no pivot-cycles iff the pivot-map of the delta graph of G has no odd elementary

cycles.

Proof: Let Mp be the pivot-map of the delta graph Gd of G. Without loss of generality we assume that G is
2-connected. By T140, an elementary path P of length > 2 of G corresponds to an elementary path in Gd.
Accordingly a path in G corresponds to a path in Gd. By definition, every point in Mp is a pivot-point and
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every delta on a pivot-path in G has a corresponding point in Mp. Hence when G has a pivot-cycle, there is
a corresponding odd cycle in Mp. By T144, when Mp has an odd cycle, Mp has an odd elementary cycle.
Consequently if G has a pivot-cycle, the pivot-map Mp has an odd elementary cycle. By T140, when Mp

has an odd elementary cycle, there is an corresponding odd cycle Co in G. By definition every point p in Mp

is a pivot-point and its corresponding delta is a pivot. Hence Co is a pivot-cycle of G. Consequently the
statement “a graph G has a pivot-cycle” is equivalent to “the pivot-map Mp has an odd elementary cycle”.
�

T139: The coupled edges of a pivot are coherent for its pivot-vertex.

Proof: When a vertex triple (a,b,c) is a linear triple (i.e., edges ab, bc exist and ac does not), by T11
coupled edges ab and bc must be coherent for the middle vertex b in any complete plotnikov digraph.
Suppose a delta (q,r,s) in G is a pivot and r is the pivot-vertex. By definition, there is an anti-path
aP(q,a1,a2,..,ak,s), where vertices a1,a2,..,ak are the neighbors of r. As the edges on aP are not in G, the
deltas (q,r,a1), (a1,r,a2),.., (ak,r,s) are linear triples. Hence concerning above, edge pairs (qr,ra1),(a1r, ra2),...,
(akr,rs) must be coherent for the vertex r respectively in any complete plotnikov digraph. Therefore it is
immediate that the coupled edges qr, rs are coherent for the pivot-vertex r. �

T140: Given a 2-connected graph G, the delta graph Gd of G. An elementary path of length > 2 in G

corresponds to an elementary path in Gd and an elementary path in Gd corresponds to a path in G .

Proof: By T145 a vertex of G one to many corresponds to points in Gd. As well an edge in G one to many
corresponds to lines in Gd. Without loss of generality we assume the size of G is greater than 5. Consider a
3-path P4(s,t,u,v) in G. If P4 is closed, by T133 a triangle (s,t,u) exactly corresponds to a triangle (S,T,U) in
Gd. Then suppose P4 is open. Four points S(r,s,t), T(s,t,u), U(t,u,v), V(u,v,w) are in Gd, where r,s,t,u,v,w are
vertices of G. That is, the 3-path P4 uniquely corresponds to an 3-path (S,T,U, V) in Gd and all the points in
the path are distinct. As well an elementary path of length > 2 in G can be decomposed into a set of 3-
paths and all of points in those 3-paths are distinct in Gd. Therefore an elementary path xy of G

corresponds to an elementary path XY of Gd. Especially if xy is closed, XY also is closed. It is immediate
from T145 that an elementary path XY of Gd is a path xy of G. Further if XY is closed, xy also is closed. �

T141: A graph G has an odd cycle iff G has an odd elementary cycle .

Proof: If G has an odd elementary cycle Ce, G has an odd cycle Ce. Then assume G has an odd cycle Co. If
Co is elementary, we have an odd elementary cycle Co. If Co is simple, by T143 G has an odd elementary
cycle. In general case, the path of Co may include multi-edges, (i.e., multiple occurrence of the same edge).
We can get an odd simple cycle Cs on Co by the following procedure.

(1) Given an odd cycle Co. Let Co be Cs.
(2) If Cs is simple (i.e., with no multi-edges) end.
(3) Choice an arbitrary multi-edge e in Cs.
(4) Remove 2 occurrences of e from Cs and get a new graph C1.
(5) If C1 is connected, C1 is still an odd cycle. let C1 be Cs. goto (2).
(6) If C1 is separated into K1 and a cycle C2, C2 is still an odd cycle. Let C2 be Cs. goto (2).

By definition, Co have at least three vertices. As the length of Co is finite, this procedure definitely halts
and we obtain an odd simple cycle Cs. Then we can find an odd elementary cycle Ce as above. �
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T142: If a 2-connected graph G has a complete and coherent extension-digraph, then G is transitive .

Proof: Let D1 be the complete and coherent extension-digraph of G. By definition, we have an extension-
graph G1 of G and an independent set partition ∏ for the ∏-reduction of G1 to G. D1 is a complete
plotnikov digraph of G1 and the edges of D1 are coherent with ∏. G1 is of course transitive for its plotnikov
digraph D1 is complete. We can construct a complete meta-plotnikov digraph D0 of G1, with which the
extension-digraph D1 is coherent by the following procedure.

(1) Given a graph G(V,E), a transitive extension-graph G1(V1,E1) of G, the independent set partition ∏ of G1.
A complete plotnikov digraph D1 of G1 coherent with ∏. |V| = |∏|.

(2) Make a directed multigraph Dm(Vm,Em) by contracting all vertices of D1 in an element of ∏ to a vertex of
Dm. |Vm| = |∏|, |Em| = |E1|.

(3) Get a directed graph D0(V0,E0) by merging every multi-edges of a vertex pair of Dm into an edge of D0.
|V0| = |∏| = |V|.

(4) D0 is a complete plotnikov digraph of G.

First we contract the vertices of the digraph D1 and get a multigraph Dm. All of vertices in each
independent set of ∏ are reduced to a vertex in Dm. This makes a multigraph having the same number of
edges as G1, i.e., |Em| = |E1|, |Vm| = |∏| = |V|. Since D1 is complete by hypothesis, D1 is acyclic and then Dm is
also acyclic. Further as we do not eliminate any edges in D1, the transitivity of D1 is preserved by the
multigraph Dm. Next we reduce all edges in a vertex pair of the multigraph Dm into an edge and get a
directed graph D0. By hypothesis edges of D1 are coherent with the independent set partition ∏, and then
all multi-edges in a vertex pair of Dm have the same orientation and are coherent with the corresponding
edge in D0. Obviously D0 is acyclic and the transitivity of Dm is preserved by D0, then D0 is transitively
complete. As G1 is an extension-graph of G0 and D1 is the plotnikov digraph of G1, D0 is a complete meta-
plotnikov digraph of G1. Hence D0 is a complete plotnikov digraph of G and then G is transitive. �

T143: A graph G has an odd simple cycle iff G has an odd elementary cycle .

Proof: If G has an odd elementary cycle Ce, G has an odd simple cycle Ce. Then assume G has an odd
simple cycle Cs. As Cs is an eulerian graph, by T137 we get a distinct elementary cycles set Ce of Cs. Since
Cs is odd, the number of edges is odd. Consequently it is obvious that there is at least one odd elementary
cycle Ce ∈  Ce. Hence when G has an odd simple cycle, G has an odd elementary cycle. �

T144: The following three statements are equivalent for a graph G .
(1)G has an odd elementary cycle.
(2)G has an odd simple cycle .
(3)G has an odd cycle.

Proof: Immediate from T143, T141. �

T145: Given a 2-connected graph G, the delta graph Gd of G, the pointset partition ∏ of Gd. A vertex of G

one to one corresponds to a pointset in ∏ and one to many corresponds to points in Gd. An edge in G one

to many corresponds to lines in Gd.

Proof: As G is 2-connected, every vertex y of G is incident with at least two edges xy and yz. Hence Gd has
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at least one point p(x,y,z) and every vertex y of G has a corresponding pointset Y ∈  ∏, p ∈  Y. Accordingly
a vertex y in G one to one corresponds to a pointset Y ∈  ∏ and one to many corresponds to points in Gd. By
definition, when an edge xy is in G, there are lines p*q* in Gd such as p*(u*,x,y) ∈  X, q*(x,y,v*) ∈  Y, X,Y
∈  ∏. Hence an edge in G one to many corresponds to lines in Gd. �

T146: Given a graph G, the delta graph Gd of G, the pointset partition ∏ of Gd. Suppose points p0,p1 ∈  P,

q0,q1 ∈  Q, P,Q ∈  ∏. Whenever there exist lines p0q0, p1q1 in Gd, the lines p0q1, p1q0 exist in Gd.

Proof: Without loss of generality we assume that the size of G is greater than 5. As there are lines p0q0, p1q1,
by definition p0 and q0 have a common edge x0y0 in G, as well p1 and q1 have a common edge x1y1 in G.
Then it comes to be p0(w0,x0,y0), q0(x0,y0,z0), p1(w1,x1,y1), q1(x1,y1,z1), where w0,w1,x0,x1,y0,y1,z0,z1 are vertices
in G. Moreover {p0, p1}, {q0, q1} are in the same pointset respectively, i.e., x0 = x1 and y0 = y1. Hence it turns
to p1 = (w1,x0,y0), q1 = (x0,y0,z1). Accordingly it is apparent that there are lines p0q1 = (w0,x0,y0,z1) and p1q0 =
(w1,x0,y0,z0). �

T147: Given a graph G, the delta graph Gd of G, the pointset partition ∏ of Gd, the pivot-map Mp(core-

map Mc) of Gd. A connected component Cp of Mp(Mc) corresponds to a set S of the pointset pairs of ∏ and

no other components than Cp have pivot-lines(core-lines) belonging to a pointset pair ∈  S.

Proof: Let Cp0,Cp1 be two distinct components of Mp(Mc). Assume there are lines p0q0 in Cp0 and p1q1 in
Cp1, where p0,p1 ∈  P, q0,q1 ∈  Q, P,Q ∈  ∏. Then by T146, we have lines p0q1, p1q0 in Gd. This contradicts
the hypothesis that Cp0, Cp1 are disconnected. Hence all of pivot-lines(core-lines) in a pointset pair (P,Q)
is dominated by some particular component of Mp(Mc). That is, a connected component Cp of Mp(Mc)
corresponds to an unique pointset-pair set S = {(P,Q)} and other components than Cp have no pivot-
lines(core-lines) in a pointset pair (P, Q) ∈  S. �

T148: A subgraph of a graph G induced by the vertices of a core-path in G is a twisted path in G .

Proof: By definition every delta di on a core-path P0(p0,p1,...,pn) of G is not a pivot, where pi is a vertex of
G and the delta di is a 2-path (pi-1,pi,pi+1) in G. Since di is not a pivot, the vertex pair (pi-1,pi+1) must be joined
in G. Hence the subgraph T induced by the vertices of the core-path P0 has a spanning path P0(p0,p1,...,pn)
and paths P1(p0,p2,...), P2(p1,p3,...), then T is a twisted path in G. �

T149: A core-line of the delta graph Gd of size > 2 of a graph G has corresponding triangles in G .

Proof: A core-line is an edge in a delta graph joining core-points (i.e., non-pivot-points). Suppose a core-
line pq in Gd, where p(s,t,u), q(t,u,v) are core-points of Gd and s,t,u,v are vertices in G. By definition we
have edges st, tu, uv in G and the core-line pq corresponds to the edge tu. Since the points p, q are non-
pivot-points, the vertex pairs (s,u), (t,v) must be joined in G respectively. That is, there are edges su and tv
in G. Hence we have triangles (s,t,u) and (t,u,v) in G. The edge tu is included in both triangles, hence the
core-line pq has corresponding triangles in G. If the vertex s coincides with v, we have just one triangle
(s,t,u). �

T150: A vertex pair (p,q) in a strongly twisted path Tp is always joined.

Proof: By definition, a twisted path Tp has a spanning path P0(p0,p1,...,pn) and paths P1(p0,p2,...), P2(p1,p3,...)
such as the alternate vertex sequences of P0 and V(P0) = V(P1) ∪  V(P2). By hypothesis Tp is strongly twisted,
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hence when there are edges p0pk-1 and pk-1pk, there is an edge p0pk. Consequently when a strongly twisted
path (p0,pk) exist, there exist edges (p0,p1), (p0,p2), ..., (p0,pk). As Tp is connected, for all vertex pair (p,q) has
a path (p,q) and then an edge pq always exists. �

T152: A path in the core-map of the delta graph of a graph G corresponds to a twisted path in G .

Proof: To prove this, it is enough to show that every 2-path in the core-map Mc of the delta graph Gd of G
corresponds to a twisted path in G. T149 says that a core-line of the delta graph Gd has corresponding
triangles in G. When there is a 2-path (p,q,r) in Mc, where p(s,t,u), q(t,u,v), r(u,v,w) are core-points and
s,t,u,v,w are vertices in G, we have edges st, tu, uv, vw. Since points p,q,r are not pivot-points, vertex pairs
(s,u), (t,v), (u,w) must be joined in G respectively. That is, there are edges su, tv, uw in G, then we have
triangles (s,t,u), (t,u,v), (u,v,w) in G. Hence whenever there is a 2-core-path (p,q,r), there is a
corresponding twisted path (s,t,u,v,w) in G. Especially when t coincides with v, there are two triangles
(s,t,u), (u,t,w) and two twisted paths (s,t,u,w) and (s,u,t,w). �

Note: Edges su, tv, uw are not necessarily core-lines. Therefore a connected component of the core-map
Mc of Gd is not necessarily a clique of G. The situation is the same for T148.

T160: A graph G has a pivot-cycle iff G has an OZ-cycle .

Proof: By T21, if G has an OZ-cycle, G has a pivot-cycle. Then we will show the converse. Let
C0(p0,p1,...,p2m) be the front-cycle of a pivot-cycle Pv in G. By definition every delta (pi-1,pi,pi+1) on C0 is a
pivot and there is an anti-path aPi connecting pi-1 with pi+1 in N(pi). Consider the case such that for every
deltas (pi-1,pi,pi+1) in C0, 0 ≤ i ≤ 2m,+- is mod 2m+1: there is not the edge pi-1pi+1. Then C0 is an OZ-cycle. In
the other case such that there is an edge pk-1pk+1 for some k, 0 ≤ k ≤2m, we show that there is always an even
zigzag path Zk connecting pk-1 to pk+1. Let aPk be the anti-path connecting pk-1 to pk+1, aPk = (pk-1,q1,...,qw, pk+1).
Since all of vertices in aPk is in N(pk), We have an even zigzag path Zk = (pk-1,pk,q1,pk,..., pk,qw,pk,pk+1). And
we exchange the 2-path (pk-1,pk,pk+1) on C0 by the even zigzag path Zk and get an extended odd cycle C1. We
can repeat this operation until there is no short chord (i.e., an edge connecting the end vertices of a 2-path
on the cycle) on C1 and the obtained odd cycle C1 is the front-cycle of an OZ-cycle in G. �

Rigorous Proof of T160: By T21 if G has an OZ-cycle, G has a pivot-cycle. We show, whenever there is a
pivot-cycle Pv(C0,C1) in G, there is an OZ-cycle Z(Z0,Z1) in G. Let C0(p0,p1,...,p2m) be the front-cycle of
pivot-cycle Pv. By definition every delta (pi-1,pi,pi+1) on C0 is a pivot and there is an anti-path aPi

connecting pi-1 to pi+1 in N(pi). If all the anti-paths aPi in the rear-cycle C1 of Pv are edges pi-1pi+1 in ~G, we
have Z0 = (p0,p1,...,p2m) and Z1 = (p0,p2,p4,..., p2m-3,p2m-1). Otherwise, there is a path Pi = (pi,1,pi,qi,1,pi,
qi,2,...,pi,qi,k(i), pi,pi+1) and an anti-path aPi = (pi-1, qi,1,qi,2,...,qi,k(i),pi+1) for each i, 0 ≤ i ≤ 2m, where {qi,1,
qi,2,...,qi,k(i)} is a connected component in ~N(pi). In this case we use k(i) loops pi pi for the rear cycle Z1.
Z0 = (p0,                     1
p1,q1,1,p1,q1,2,p1,...,q1,k(1),p1,             2k(1)+1
p2,q2,1,p2,q2,2,p2,...,q2,k(2),p2,             2k(2)+1
...........,
p2m,q2m,1,p2m,q2m,2,...,q2m,k(2m),p2m,         2k(2m)+1
p0,q0,1,p0,q0,2,p0,...,q0,k(0)).              2k(0)
Z1 = (p0,                 1
q1,1,q1,2,...,q1,k(1),                      k(1)
p2,p2,...,p2,                        k(2)+1
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q3,1,q3,2,...,q3,k(3),                      k(3)
...,
q2m-1,1,q2m-1,2,...,q2m-1,k(2m-1),              k(2m-1)
p2m,p2m,...,p2m,                     k(2m)+1
q0,1,q0,2,...,q0,k(0),                      k(0)
p1,p1,...,p1,                        k(1)+1
q2,1,q2,2,...,q2,k(2),                      k(2)
....,
p2m-1,p2m-1,...,p2m-1,                   k(2m-1)+1
q2m,1,q2m,2,...,q2m,k(2m),                   k(2m)
p0,p0,...,p0).                     k(0)

the length of Z0,Z1 = 2∑
=

m

i

ik
2

0

)( +2m+1 = odd. I.e., Z0 and Z1 are odd cycles and their vertex sets coincide

with V(C1) of the pivot-cycle Pv(C0,C1). Hence whenever G has a pivot-cycle Pv(C0,C1) , G has an OZ-
cycle Z(Z0,Z1), |Z | = |Z0| = |Z1| = |C1|. �

T161: A graph G has a pivot-cycle iff G has an elementary pivot-cycle .

Proof: See Gallai, 1967 [3]. �

T170� For every berge graph G0, there exists a perfect graph G1 obtained by adding edges to G0 satisfying

the following inequality: maximum clique size of G1 ≤ maximum clique size of G0.�

Proof: Pending...

T171: Every vertex induced subgraph of a berge graph is a berge graph.

Proof: Let Bs be an induced subgraph of a berge graph B. Whenever Bs has an odd hole, B has an odd hole.
As well whenever Bs has an odd anti-hole, B has an odd anti-hole. This contradicts the definition of berge
graph. Hence a subgraph of a berge graph has neither odd holes nor odd anti-holes. I.e., a subgraph of a
berge graph is a berge graph. �

T172: A perfect graph is a berge graph.

Proof: By T3, a perfect graph G and the complement has no odd holes. Assume G has an odd anti-hole aH.
Consider the complement aG of G. By T1, aG is perfect. As G has an odd anti-hole aH, aG has an odd
hole H. I.e., a perfect graph aG has an odd hole H. This contradicts T3, hence a perfect graph G has
neither odd holes nor odd anti-holes. As well a perfect graph aG has neither odd holes nor odd anti-holes
I.e., a perfect graph is a berge graph. �
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Appendix

Gallai’s Gamma Table
Minimally Intransitive Graph Collection

2n
2n

2n

2n

Γ1

l0 = 2n+1,  l1 = 2n+1, n ≥ 2

Γ2

l0 = 2n+1,  l1 = 2n+3, n ≥ 2

Γ3

l0 = 2n+1, l1 = 2n+4, n ≥ 2

l0 = 3,  l1 = 12

Γ5

Γ4

l0 = 2n+1,  l1 = 2n+5, n ≥ 2

l0 = 3,  l1 = 9

Γ9 Γ10

l0 = 3,  l1 = 8

Γ7

l0 = 3,  l1 = 10

Γ11

l0 = 3,  l1 = 8

Γ12

l0 = 3,  l1 = 8

Γ13

l0 = 3,  l1 = n, n ≥ 6

Γ14

l0 = 3,  l1 = 7

Γ15

l0 = 3,  l1 = γ+5, γ ≥ 1

Γ16

l0 = 3,  l1 = γ+5, γ ≥ 1

Γ17

l0 = 3,  l1 = 7

Γ18

l0 = 3,  l1 = 7

Γ19

l0 = 3,  l1 = 7

Γ6

l0 = 3,  l1 = γ+7, γ ≥ 3

1 2 γ

l0 = 3,  l1 = 9

Γ8

0
0

0 0

1

1

1

12

2
2

2

γ γ1 1


